首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A multi-residue method for the determination of organochlorine pesticides in fish feed samples was developed and optimized. The method is based on a cleanup step of the extracted fat, carried out by liquid–liquid extraction on diatomaceous earth cartridge with n-hexane/acetonitrile (80/20, v/v) followed by solid phase extraction (SPE) with silica gel–SCX cartridge, before the identification and quantification of the residues by gas chromatography–triple quadrupole tandem spectrometry (GC–MS/MS). Performance characteristics, such as accuracy, precision, linear range, limits of detection (LOD) and quantification (LOQ), for each pesticide were determined. Instrumental LODs ranged from 0.01 to 0.11 μg L−1, LOQs were in the range of 0.02–0.35 μg L−1, and calibration curves were linear (r2 > 0.999) in the whole range of explored concentrations (5–100 μg L−1). Repeatability values were in the range of 3–15%, evaluated from the relative standard deviation of six samples spiked at 100 μg kg−1 of fat, and in compliance with that derived by the Horwitz's equation. No matrix effects or interfering substances were observed in fish feed analyses. The proposed method allowed high recoveries (92–116%) of spiked extracted fat samples at 100 μg kg−1, and very low LODs (between 0.02 and 0.63 μg kg−1) and LOQs (between 0.05 and 2.09 μg kg−1) determined in fish feed samples.  相似文献   

2.
Due to the different physico-chemical properties of phenols, the development of a methodology for the simultaneous extraction and determination of phenolic compounds belonging to several families, such as chlorophenols (CPs), alkylphenols (APs), nitrophenols (NTPs) and cresols is difficult. This study shows the development and validation of a method for the analysis of 13 phenolic compounds (including CPs, APs, NTPs and cresols) in agricultural soils. For this purpose, a quick, easy, cheap, effective, rugged and safe (QuEChERS)-based procedure was developed, validated and applied to the analysis of real samples. A derivatization step prior to the final determination by gas chromatography (GC) coupled to a triple quadrupole analyzer operating in tandem mass spectrometry (QqQ-MS/MS) was performed by using acetic acid anhydride (AAA) and pyridine (Py). The optimized procedure was validated, obtaining average extraction recoveries in the range 69–103% (10 μg kg−1), 65–98% (50 μg kg−1), 76–112% (100 μg kg−1) and 76–112% (300 μg kg−1), with precision values (expressed as relative standard deviation, RSD) ≤ 22% (except for 4-chlorophenol) involving intra-day and inter-day studies. Furthermore, 15 real soil samples were analyzed by the proposed method in order to assess its applicability. Some phenolic compounds (e.g. 2,4,6-trichlorophenol or 4-tert-octylphenol) were found in the samples at trace levels (<10 μg kg−1).  相似文献   

3.
This paper reports a comprehensive sensitive multi-residue liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for detection, identification and quantitation of 73 pesticides and their related products, a total of 98 analytes, belonging to organophosphorus pesticides (OPPs) and carbamates, in foods. The proposed method makes use of a modified QuEChERS (quick, easy, cheap, effective, rigged, and safe) procedure that combines isolation of the pesticides and sample clean-up in a single step. Analysis is performed by liquid chromatography-electrospray ionization–tandem mass spectrometry operated in the multiple reaction monitoring (MRM) mode, acquiring two specific precursor-product ion transitions per target compound. Two main fragment ions for each pesticide were obtained to achieve the identification according to the SANCO guidelines 10684/2009. The method was validated with various food samples, including edible oil, meat, egg, cheese, chocolate, coffee, rice, tree nuts, citric fruits, vegetables, etc. No significant matrix effect was observed for tested pesticides, therefore, matrix-matched calibration was not necessary. Calibration curves were linear and covered from 1 to 20 μg L−1 for all compounds studied. The average recoveries, measured at 10 μg kg−1, were in the range 70–120% for all of the compounds tested with relative standard deviations below 20%, while a value of 10 μg kg−1 has been established as the method limit of quantitation (MLOQ) for all target analytes. Similar trueness and precision results were also obtained for spiking at 200 μg kg−1. Expanded uncertainty values were in the range 21–27% while the HorRat ratios were below 1. The method has been successfully applied to the analysis of 700 food samples in the course of a baseline monitoring study of OPPs and carbamates.  相似文献   

4.
An improved LC-MS/MS method for the determination of semicarbazide in whole egg is described. Waters OASIS-MCX cation exchange purification cartridges increased the sensitivity for analysis by LC-MS/MS. The validation study was carried out according to criteria and requirements of Commission Decision 2002/657/EC for confirmatory analysis and provided the data as follows: The correlation coefficient for the matrix calibration curve, in the range of 0–5 μg kg−1, was r = 0.9968. The detection capability and decision limit, measured according to ISO11843-2, were CCα = 0.20 μg kg−1 and CCβ = 0.25 μg kg−1. Repeatability (CVSr) and within-laboratory reproducibility (CVSwr) determined for the concentration levels of 0.2, 0.5 and 1.0 μg kg−1 SEM ranged from 11.9 to 5.7% and 11.8 to 6.3%, respectively. The validated method was applied to investigate SEM stability in incurred materials (egg homogenates) during long-term storage at −20 °C and 4 °C. The study proved by a two-sampling test that SEM at levels of 17. 7, 1.2, 10.6 and 0.47 μg kg−1 was stable for up to 12 months.  相似文献   

5.
This study compared four extraction methods for the simultaneous determination of tetracyclines, macrolides, quinolones, sulphonamides and anthelmintics (including benzimidazoles and avermectins) in eggs by ultra-high pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Solvent extraction, solid-phase extraction (SPE), matrix solid-phase dispersion (MSPD) and modified QuEChERS procedure were compared in terms of recovery and number of veterinary drugs extracted. The solvent extraction procedure with a clean-up step provided better results than the other tested procedures. The QuEChERS procedure was simpler and faster, but extracted fewer compounds than solvent extraction. MSPD did not extract tetracyclines and quinolones, whereas macrolides and tetracyclines were not extracted when SPE was applied. The solvent extraction procedure was validated, obtaining recoveries ranging from 60% (sulfaquinoxaline) to 119% (levamisole) with repeatability values (expressed as relative standard deviations, RSDs) lower than 20% at two concentration levels (10 and 100 μg kg−1), except for erythromycin, emamectin and ivermectin that showed RSD values close to 25% at 10 μg kg−1. Limits of quantification (LOQs) were always equal or lower than 5 μg kg−1. Finally the method was applied to egg samples, and erythromycin, enrofloxacin, difloxacin, thiabendazole, emamectin and fenbendazole were detected in four samples.  相似文献   

6.
This paper reports the assessment of the total mercury (T-Hg) and methylmercury (MeHg) contamination of mussel samples collected by two sampling campaigns from along the coastline of Sardinia (Italy). T-Hg has been determined by a direct mercury analyser (DMA) whereas MeHg has been determined by gas chromatography-mass spectrometry (GC-MS) after acid extraction, and employs a novel NaBPh4 derivatization method. The evaluation of the quality of measurements was carried out by analysing candidate certified reference material (CRM) BCR 710, for MeHg and T-Hg, and CRM IAEA-350 for T-Hg. In the analysed samples, the T-Hg concentrations range from 35 to 115 μg kg−1 and from 40 to 830 μg kg−1, for the two sampling campaigns, respectively, whereas the MeHg concentrations range from l5 to 51 μg kg−1 and from 17 to 116 μg kg−1. Consequently, the MeHg/T-Hg ratios range from 0.33 to 0.91 and from 0.14 to 0.98, respectively. Despite the increasing trend of Hg concentration from the first to the second sampling campaign, the T-Hg concentration of all the samples was much below the 0.5 μg g−1 WHO limit, and the MeHg values ranged between 2.2 and 17.2 μg kg−1, not exceeding the 43.5 μg kg−1 tolerable daily residue level calculated for Italy.  相似文献   

7.
This paper describes the development and validation of an analytical methodology to determine eight perfluorinated compounds (PFCs) in edible fish using pressurized liquid extraction (PLE) with water and solid-phase extraction (SPE) with an ion-exchanger as extraction and pre-concentration procedures, followed by liquid chromatography–quadrupole-linear ion trap mass spectrometry (LC–QqLIT–MS). The rapidity and effectiveness of the proposed extraction procedure were compared with those most commonly used to isolate PFCs from fish (ion-pairing and alkaline digestion). The average recoveries of the different fish samples, spiked with the eight PFCs at three levels (the LOQ, 10 and 100 μg kg−1 of each PFC), were always higher than 85% with relative standard deviation (RSD) lower than 17%. A good linearity was established for the eight PFCs in the range from 0.003–0.05 to 100 μg kg−1, with r > 0.9994. The limits of quantification (LOQs) were between 0.003 and 0.05 μg kg−1, which are well below those previously reported for this type of samples. Compared with previous methods, sample preparation time and/or LOQs are reduced. The method demonstrated its successful application for the analysis of different parts of several fish species. Most of the samples tested positive, mainly for perfluoropentanoic acid (PFPA), perfluorobutane sulfonate (PFBS) and perfluorooctanoic acid (PFOA) but other of the eight studied PFCs were also present.  相似文献   

8.
Fipronil, a phenylpyrazole insecticide introduced for pest control on a broad range of crops, can also affect non-target insects such as honeybees. More widely, non-target environment such as milk produced by dairy cows fed with maize silage from treated seeds (=silage T) can be affected. To assess the potential transfer of fipronil residues (sulfone, sulfide, fipronil, desulfinyl and amide), a methodology including gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) analysis was developed and validated according to the 2002/657/EC decision, in order to reach a level of quantification below 0.1 μg L−1 in milk and 0.1 μg kg−1 in plants. Twelve dairy cows were fed with silage T during 4 months. Concentration of fipronil in treated seeds was estimated at 1 g kg−1, whereas silage from these seeds contained 0.30 ± 0.05 μg kg−1 of dry material of fipronil, 0.13 ± 0.03 μg kg−1 of dry material of sulfone. Sulfide residues were below the limit of quantification. Silage from untreated seeds (=silage U) presented traces of fipronil and sulfone, respectively at 0.04 ± 0.06 and 0.02 ± 0.03 μg kg−1 of dry material. Contribution of fipronil residues from supplies was insignificant. During administration of silage T, only sulfone residues were quantified in milk. The average concentration was 0.14 ± 0.05 μg L−1. Before and after administration, sulfone residues were detected but not quantifiable (<0.025 μg L−1). Our results suggest a transfer of fipronil from feed to milk under its sulfone form. Moreover, traces of fipronil residues in maize U, soya, wheat and straw show a diffuse contamination of this pesticide in the environment.  相似文献   

9.
A rapid confirmatory method has been developed and validated for the simultaneous identification, confirmation and quantitation of 11 nitroimidazoles in eggs by liquid chromatography tandem mass spectrometry (LC–MS/MS). The method is validated in accordance with Commission Decision 2002/657/EC and is capable of analysing metronidazole (MNZ), dimetridazole (DMZ), ronidazole (RNZ), ipronidazole (IPZ) and their hydroxy metabolites MNZ-OH, HMMNI (hydroxymethyl, methyl nitroimidazole), IPZ-OH. The method is also capable of analysing carnidazole (CRZ), ornidazole (ORZ), tinidazole (TNZ) and ternidazole (TRZ). MNZ, DMZ and RNZ have been assigned a recommended level (RL) of 3 μg kg−1 by the Community Reference Laboratory (CRL) in Berlin. The developed method described in this study is easily able to detect all the nitroimidazole compounds investigated at this level and below. Egg samples are extracted with acetonitrile, and NaCl is added to help remove matrix contaminants. The acetonitrile extract undergoes a liquid–liquid wash step with hexane; it is then evaporated and reconstituted in mobile phase. The reconstituted samples are analysed by liquid chromatography tandem mass spectrometry (LC–MS/MS). The decision limits (CCα) range from 0.33 to 1.26 μg kg−1 and the detection capabilities (CCβ), range from 0.56 to 2.15 μg kg−1. The results of the inter-assay study, which was performed by fortifying hen egg samples (n = 18) on three separate days, show the accuracy calculated for the various analytes to range between 87.2 and 106.2%. The precision of the method, expressed as %CV values for the inter-assay variation of each analyte at the three levels of fortification (3, 4.5 and 6.0 μg kg−1), ranged between 3.7 and 11.3%. A Day 4 analysis was carried out to examine species variances in eggs from different birds such as duck and quail and investigating differences in various battery and free range hen eggs.  相似文献   

10.
This paper describes a method for the detection and quantification of 38 residues of the most widely used anthelmintics (including 26 veterinary drugs belonging to the benzimidazole, macrocyclic lactone and flukicide classes) in bovine liver using two different protocols for MRL and non-MRL levels. A dual validation approach was adopted to reliably quantify anthelmintic residues over an extended concentration range (1-3000 μg kg−1). Sample extraction and purification was carried out using a modified QuEChERS method. A concentration step was included when analysing in the low μg kg−1 range. Rapid analysis was carried out by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), which was capable of detecting residues to <2 μg kg−1. The method has been single-laboratory validated according to the 2002/657/EC guidelines and met acceptability criteria in all but a few cases. The inclusion of 19 internal standards, including 14 isotopically labelled internal standards, improved accuracy, precision, decision limit (CCα) and detection capability (CCβ).  相似文献   

11.
An enzyme-linked immunosorbent assay (ELISA) was used for the determination of fenoxycarb in apple leaf samples. Single step extraction procedures with phosphate-citrate buffered solution containing different amounts of methanol were tested showing that a solvent percentage of 20% (v/v) was the best condition, with recoveries between 85 and 100% in the working range of 25-500 μg kg−1 and a negligible matrix effect. The low detection limit reached, 1 μg kg−1 against 50 μg kg−1 for the recommended liquid chromatographic method, makes the ELISA more suitable for determinations of the fenoxycarb residues in apple leaf samples. The reliability of the ELISA was evaluated by assaying the insecticide in spiked and contaminated samples by three different approaches: direct determination, standard addition method with a calibration graph, and the dilution test. The corresponding coefficients of variation were, respectively, 11, 22 and 27%. The direct determination on the (1+1) diluted apple leaf extract was used to measure the insecticide residues in samples collected in the north-eastern Italian regions of Veneto and Trentino-Alto Adige.  相似文献   

12.
An ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of aflatoxins B1, B2, G1, G2, M1 and M2 in traditional Chinese medicines (TCMs) was developed. The approach was characterized in details and a special focus was placed on the recovery rates of isolation procedure in different TCM matrices, i.e. rhizomes and roots, seeds, flowers, grasses and leaves. For this purpose, [13C17]-aflatoxinB1 was employed as the internal standard and a reliable solid phase extraction-based clean-up method was developed. The observed recovery rates of the six aflatoxins ranged from 85.6% to 117.6% in different matrices. Then, the established method was successfully applied to the determination of the six aflatoxins in various TCMs. For 30 commercial samples analyzed, 16 were contaminated with aflatoxins. The mean levels (incidence) of aflatoxins B1, B2, G1 and G2 in positive samples were 1.40 (68.8%), 1.27 (50.0%), 0.50 (43.8%) and 0.94 (43.8%) μg kg−1, respectively. Interestingly, aflatoxin M1 was detected in two samples with the maximal content of 0.70 μg kg−1. No sample was contaminated with aflatoxin M2. Meanwhile, a possible association between the contamination levels and the selected herbs was clarified in the present study.  相似文献   

13.
Shen CY  Cao XW  Shen WJ  Jiang Y  Zhao ZY  Wu B  Yu KY  Liu H  Lian HZ 《Talanta》2011,84(1):141-147
An analytical method with the technique of QuEChERS (quick, easy, cheap, effective, rugged and safe) and gas chromatography (GC)/mass spectrometry (MS) in negative chemical ionization (NCI) has been developed for the determination of 17 pyrethroid pesticide residues in troublesome matrices, including garlic, onion, spring onion and chili. Pyrethroid residues were extracted with acidified acetonitrile saturated by hexane. After a modified QuEChERS clean-up step, the extract was analyzed by GC-NCI/MS in selected ion monitoring (SIM) mode. An isotope internal standard of trans-cypermethrin-D6 was employed for quantitation. Chromatograms of pyrethroids obtained in all these matrices were relatively clean and without obvious interference. The limits of detection (LODs) ranged from 0.02 to 6 μg kg−1 and recovery yields were from 54.0% to 129.8% at three spiked levels (20, 40 and 60 μg kg−1 for chili, and 10, 20 and 30 μg kg−1 for others) in four different matrices depending on the compounds determined. The relative standard deviations (RSDs) were all below 14%. Isomerization enhancement of pyrethroids in chili extract was observed and preliminarily explained, especially for acrinathrin and deltamethrin.  相似文献   

14.
《Analytica chimica acta》2004,515(1):55-63
Clenbuterol has been extracted by mixed solid-phase extraction from two biological matrices (bovine hair and urine) and detected by GC/MS (selected ion monitoring (SIM) and full-SCAN modes). The analytical signal has been modelled with univariate and three-way models, namely DTLD, PARAFAC, PARAFAC2, Tucker3 and trilinear PLS. Since clenbuterol is a banned substance a comparative study of the capability of detection (CCβ, X0=0) has been performed as a function of the sample (hair, 74 μg kg−1 and urine, 0.36 μg l−1), the mode in which the signals are monitored (SCAN, 283 μg kg−1 and SIM, 74 μg kg−1) and the statistical model (univariate, 283 μg kg−1 and trilinear PLS, 20.91 μg kg−1). The capability of detection has been calculated as stated in ISO 11843 and Decision 2002/657/EC setting in all cases the probabilities of false positive and of false negative at 0.05.The identification of the mass spectra must be done to confirm the presence of clenbuterol and has been carried out through PARAFAC. The correlation coefficient between the spectra estimated by PARAFAC and the library spectra is 0.96 (hair, SCAN mode) and 1.00 (hair and urine, SIM mode).The Decision 2002/657/EC advocates the use of independent mass fragments to identify banned compounds. These recommendations together with the effect of the number of ions registered on the capability of detection have lead us to select five uncorrelated fragments (86, 243, 262, 264 and 277) from the data set of 210 ions by hierarchical clustering of variables.  相似文献   

15.
The study of pesticide residues belonging to endocrine disrupting chemicals (EDCs) (23 analytes of different chemical classes – organochlorines, organophosphates, pyrethroids, dicarboximides, phtalamides, dinitroanilines, pyrazole, triazinone) in apple matrix with conventional capillary GC–NCI-MS (with methane as reagent gas) in comparison to EI ionization is presented. For sample preparation QuEChERS method was applied. The lowest calibration levels (LCLs) for all pesticides were determined in both modes. Calibration in the NCI mode was performed at the concentration levels from 0.1 to 500 μg kg−1 (R2 > 0.999) and for EI in the range from 5 to 500 μg kg−1 (R2 > 0.99). From LCLs the instrumental limits of detection (LODs) and quantification (LOQs) were calculated. Chemometric study of pesticide signals in two MS modes was performed. Repeatability of all measurements, expressed by the relative standard deviations of absolute peak areas was better than 10% for the majority of compounds. Significantly lower values were obtained for the NCI mode.  相似文献   

16.
In this work, a straightforward, reliable and effective automated method has been developed for the direct determination of monoaromatic volatile BTEXS group (namely benzene, toluene, ethylbenzene, o-, m- and p-xylenes, and styrene) in olives and olive oil, based on headspace technique. Separation, identification and quantitation were carried out by headspace-gas chromatography-mass spectrometry (HS-GC-MS) in selected ion monitoring (SIM) mode. Sample pretreatment or clean-up were not necessary (besides olives milling) because the olives and olive oil samples are put directly into an HS vial, automatically processed by HS and then injected in the GC-MS for chromatographic analysis. The chemical and instrumental variables were optimized using spiked olives and olive oil samples at 50 μg kg−1 of each targeted species. The method was validated to ensure the quality of the results. The precision was satisfactory with relative standard deviations (RSD (%)) in the range 1.6-5.2% and 10.3-14.2% for olive oil and olives, respectively. Limits of detection were in the range 0.1-7.4 and 0.4-4.4 μg kg−1 for olive oil and olives, respectively. Finally, the proposed method was applied to the analysis of real olives and olive oil samples, finding positives of the studied compounds, with overall BTEXS concentration levels in the range 23-332 μg kg−1 and 4.2-87 μg kg−1 for olive oil and olives, respectively.  相似文献   

17.
A simple and rapid reversed-phase HPLC-UV method was developed for the determination of triterpenic acids in the crude extract of Prunellae Spica. Five triterpenic acids were extracted and isolated from P. Spica as marker compounds for use in the quality control of herbal medicines. Various solvent extraction techniques were evaluated, and the greatest efficiency was observed with sonication in 100% ethanol. Elemental compositions of the five marker compounds were determined by high-resolution mass spectroscopy. The dynamic range of the HPLC-UV method depended on the specific analyte, and acceptable quantitation was obtained between 10 and 250 μg mL−1 for oleanolic acid, between 10 and 300 μg mL−1 for ursolic acid, between 3 and 75 μg mL−1 for 2α,3α,24-trihydroxyolean-12en-28oic acid, between 5 and 100 μg mL−1 for euscaphic acid, and between 5 and 100 μg mL−1 for 2α,3α-dihydroxyurs-12en-28oic acid. The method was deemed satisfactory by inter- and intra-day validation and exhibited both high accuracy and precision (relative standard deviation <9.4%). Overall limits of quantitation and detection were approximately 0.5-2.5 μg mL−1 at a signal-to-noise ratio (S/N) of 3 and were about 3.0-10.0 μg mL−1 at a S/N of 10. In addition, principal component analysis (PCA) was performed on the analytical data of 15 different P. Spica samples in order to classify samples collected from different regions.  相似文献   

18.
Semicarbazide (SEM), the marker residue for the banned nitrofuran veterinary antibiotic nitrofurazone (NFZ), has been detected regularly in foods (47% of recent nitrofuran EU Rapid Alerts involve SEM). However, the validity of SEM as a definitive marker for NFZ has been undermined by SEM arising from other sources including azodicarbonamide, a plastics blowing agent and flour treatment additive. An inexpensive screening test for SEM in food matrices is needed—all SEM testing currently uses expensive LC-MS/MS instrumentation. We now report the first production of antibodies against derivatised SEM. A novel carboxyphenyl SEM derivative was used to raise a polyclonal antibody that has been incorporated into a semi-quantitative microtitre plate ELISA, validated according to the criteria set out in Commission Decision 2002/657/EC, for use with chicken muscle. The antibody is highly specific for derivatised SEM, cross-reactivity being 1.7% with NFZ and negligible with a wide range of other nitrofurans and poultry drugs. Samples are derivatised with o-nitrobenzaldehyde and simultaneously protease digested before extraction by cation exchange SPE. The ELISA has a SEM detection capability (CCβ) of 0.25 μg kg−1 when a threshold of 0.21 μg kg−1 is applied to the selection of samples for confirmation (lowest observed 0.25 μg kg−1 fortified sample, n = 20), thus satisfying the EU nitrofurans’ minimum required performance limit of 1 μg kg−1. NFZ-incurred muscles (12) containing SEM at 0.5-5.0 μg kg−1 by LC-MS/MS, all screened positive by this ELISA protocol which is also applicable to egg and chicken liver.  相似文献   

19.
Streptomycin (STR) and dihydrostreptomycin (DHSTR) are two of the most common aminoglycoside antibiotics used in veterinary medicine. The physicochemical properties of both substances, make their determination challenging. In the present study the development of methods based on ion-pair chromatography (IPC) and on hydrophilic interaction chromatography (HILIC), for the determination of the above mentioned aminoglycosides in the range of 100–1000 μg L−1 is described. The two methods were validated according to EU requirements for residues in food. The recoveries for the IPC method were 69.3% and 56.5% of STR and DHSTR, respectively, and for HILIC method 85.5% and 72.3%, respectively. The intra- and inter-day precision, studied at 100, 200 and 300 μg kg−1 levels in milk samples, gave %RSD ≤ 13 for both methods. LOQs for the HILIC method were 14 μg kg−1 for both analytes and for the IPC method were 109 and 31 μg kg−1, for STR and DHSTR, respectively. The sensitivity of the HILIC method is 80 and 210 times greater than that of the ICP method, for STR and DHSTR, respectively.  相似文献   

20.
The present study developed two analytical methods for quantification of acrylamide in complex food matrixes, such as Chinese traditional carbohydrate-rich foods. One is based on derivatization with potassium bromate and potassium bromide without clean-up prior to gas chromatography with micro-electron capture detector (GC-MECD). Alternatively, the underivatized acrylamide was detected by high-performance liquid chromatography coupled to quadrupole tandem mass spectrometry (HPLC-MS/MS) in the positive electrospray ionization mode. For both methods, the Chinese carbohydrate-rich samples were homogenized, defatted with petroleum ether and extracted with aqueous solution of sodium chloride. Recovery rates for acrylamide from spiked Chinese style foods with the spiking level of 50, 500 and 1000 μg kg−1 were in the range of 79-93% for the GC-MECD including derivatization and 84-97% for the HPLC-MS/MS method. Typical quantification limits of the HPLC-MSMS method were 4 μg kg−1 for acrylamide. The GC-MECD method achieved quantification limits of 10 μg kg−1 in Chinese style foods. Thirty-eight Chinese traditional foods purchased from different manufacturers were analyzed and compared with four Western style foods. Acrylamide contaminant was found in all of samples at the concentration up to 771.1 and 734.5 μg kg−1 detected by the GC and HPLC method, respectively. The concentrations determined with the two different quantitative methods corresponded well with each other. A convenient and fast pretreatment procedure will be optimized in order to satisfy further investigation of hundreds of samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号