首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A double electrochemical covalent coupling method based on click chemistry and diazonium chemistry for the fabrication of sensitive amperometric immunosensor was developed. As a proof-of-concept, a designed alkyne functionalized human IgG was used as a capture antibody and a HRP-labeled rabbit anti-goat IgG was used as signal antibody for the determination of the anti-human IgG using the sandwich model. The immunosensor was fabricated by electrochemically grafting a phenylazide on the surface of a glassy carbon electrode, and then, by coupling the alkyne functionalized human IgG with the phenylazide group through an electro-click chemistry in the presence of Cu(II). The amperometric measurement for the determination of the anti-human IgG was performed after the fabricated immunosensor was incubated with the target anti-human IgG and then with the HRP-labeled anti-goat IgG at −0.25 V in 0.10 M PBS (pH 7.0) containing 0.1 mM hydroquinone and 2.0 mM H2O2. The results showed that the increased current was linear with the logarithm of the concentration of the anti-human IgG in the range from 1.0 × 10−10 g mL−1 to 1.0 × 10−8 g mL−1 with a detection limit of 3 × 10−11 g mL−1. Furthermore, the feasibility of the double electrochemical covalent coupling method proposed in this work for fabricating the amperometric immunosensor array was explored. This work demonstrates that the double electrochemical covalent coupling method is a promising approach for the fabrication of the immunosensor and immunosensor array.  相似文献   

2.
A novel label-free amperometric immunosensor is proposed for the ultrasensitive detection of zearalenone (ZEN) based on mesoporous carbon (MC) and trimetallic nanorattles (core/shell particles with movable cores encapsulated in the shells). The nanorattles are composed of special Au-core and imperfect AgPt-shell structure (Au@AgPt). The Au@AgPt nanorattles are loaded onto the MC by physical adsorption. The structure of the Au@AgPt nanorattles was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Energy dispersive X-ray spectroscopy (EDS) confirmed the composition of the synthesized nanorattles. Compared with monometallic and bimetallic nanoparticles (NPs), Au@AgPt nanorattles show a higher electron transfer rate due to the synergistic effect of the Au, Ag and Pt NPs. MC further improves the sensitivity of the immunosensor because of its extraordinarily large specific surface area, suitable pore arrangement and outstanding conductivity. The large specific surface area of MC and MC@Au@AgPt were characterized by the BET method. ZEN antibodies are immobilized onto the nanorattles via Ag–NH2 bonds and Pt–NH2 bonds. Cyclic voltammetry and square wave voltammetry were used to characterize the recognizability of ZEN. Under optimum experimental conditions, the proposed immunosensor exhibited a low detection limit (1.7 pg mL−1), a wide linear range (from 0.005 to 15 ng mL−1) as well as good stability, reproducibility and selectivity. The sensor can be used in clinical analysis.  相似文献   

3.
In the present study, a novel and ultrasensitive electrochemiluminescence (ECL) immunosensor based on luminol cathodic ECL was fabricated by using Au nanoparticles and Pt nanoparticles (nano-AuPt) electrodeposited on graphene–carbon nanotubes nanocomposite as platform for the detection of carcinoembryonic antigen (CEA). For this introduced immunosensor, graphene (GR) and single wall carbon nanotubes (CNTs) dispersed in chitosan (Chi-GR-CNTs) were firstly decorated on the bare gold electrode (GE) surface. Then nano-AuPt were electrodeposited (DpAu-Pt) on the Chi-GR-CNTs modified electrode. Subsequently, glucose oxidase (GOD) was employed to block the non-specific sites of electrode surface. When glucose was present in the working buffer solution, GOD immediately catalyzed the oxidation of glucose to in situ generate hydrogen peroxide (H2O2), which could subsequently promote the oxidation of luminol with an amplified cathodic ECL signal. The proposed immunosensor was performed at low potential (−0.1 to 0.4 V) and low concentration of luminol. The CEA was determined in the range of 0.1 pg mL−1 to 40 ng mL−1 with a limit of detection down to 0.03 pg mL−1 (S N−1 = 3). Moreover, with excellent sensitivity, selectivity, stability and simplicity, the as-proposed luminol-based ECL immunosensor provided great potential in clinical applications.  相似文献   

4.
For the first time, a simple and highly sensitive label-free electrochemical carcinoembryonic antigen (CEA) immunosensor based on a cryogel electrode has been developed and tested. The as-prepared nanocomposite combined the advantages of the graphene, AuNPs and chitosan (AuNPs–GP–CS) together with the ease of preparing a cryogel coupled to a silver deposition, to act as a redox mediator, on a Au electrode. Under the optimal conditions, the decrease of the cyclic voltammetry (CV) silver peak current was proportional to the CEA concentration over a range of from 1.0 × 10−6 to 1.0 ng mL−1 with a detection limit of 2.0 × 10−7 ng mL−1. This AuNPs–GP–CS cryogel electrode gave a 1.7 times higher sensitivity and 25 times lower detection limit than the non-cryogel electrode. Moreover, the proposed electrochemical immunosensor exhibited good selectivity, reproducibility and stability. When applied to analyse clinical serum samples, the data determined by the developed immunosensor were in agreement with those obtained by the current hospital analysis system (enzyme linked fluorescent assay) (P > 0.05), to indicate that the immunosensor would be potentially useful for clinical diagnostics.  相似文献   

5.
A highly sensitive disposable amperometric immunosensor based on the use of magnetic beads (MBs) is described for determination of Ara h 1, the major peanut allergen, in only 2 h. The approach uses a sandwich configuration involving selective capture and biotinylated detector antibodies and carboxylic acid-modified MBs (HOOC-MBs). The MBs bearing the immunoconjugates are captured by a magnet placed under the surface of a disposable screen-printed carbon electrode (SPCE) and the affinity reactions are monitored amperometrically at −0.20 V (vs a Ag pseudo-reference electrode) in the presence of hydroquinone (HQ) as electron transfer mediator and upon addition of H2O2 as the enzyme substrate. The developed immunosensor exhibits a wide range of linearity between 20.8 and 1000.0 ng mL−1 Ara h 1, a detection limit of 6.3 ng mL−1, a great selectivity, a good reproducibility with a RSD of 6.3% for six different immunosensors and a useful lifetime of 25 days. The usefulness of the immunosensor was demonstrated by determining Ara h 1 in different matrices (food extracts and saliva). The results correlated properly with those provided by a commercial ELISA method offering a reliable and promising analytical screening tool in the development of user-friendly devices for on-site determination of Ara h 1.  相似文献   

6.
A highly sensitive impedimetric immunosensor based on a gold nanoparticles/multiwall carbon nanotube-ionic liquid electrode (AuNPs/MW-CILE) was developed for the determination of human epidermal growth factor receptor 2 (HER2). Gold nanoparticles were used to enhance the extent of immobilization and to retain the immunoactivity of the antibody Herceptin on the electrode. Cyclic voltammetry and electrochemical impedance spectroscopy were employed for characterization of various layers coated onto the AuNPs/MW-CILE. The impedance measurements at different steps were based on the charge transfer kinetics of the [Fe(CN)6]3−/4− redox pair. The immobilization of antibody and the corresponding antigen–antibody interaction at the electrode surface altered the interfacial electron transfer. The interactions of antibody with various concentrations of antigen were also monitored via the change of impedance response. The results showed that the charge transfer resistance increases linearly with increasing concentrations of HER2 antigen. The linear range and limit of detection were found as 10–110 ng mL−1 and 7.4 ng mL−1, respectively. The sensitivity and specificity of the immunosensor were validated. The results showed that the prepared immunosensor is a useful tool for screening of trace amounts of HER2 in serum samples of breast cancer patients.  相似文献   

7.
A label-free amperometric immunosensor for the detection of methamphetamine was developed. The prussian blue deposited/l-cystine-modified electrode was covered with nano-Au/(3-mercaptorpropyl) trime-thoxysilane film. Then, the nano-Au was used for the immunosensor platform to capture a large amount of anti-methamphetamine. PB exhibited excellent electrocatalytical properties toward the reduction of H2O2 at low overpotentia to amplify the amperometric signal, which enhanced the sensitivity of the immunosensor. The active sites of PB could be shielded and the access of H2O2 from solution to the electrode might be partially blocked after the completion of immunoassay, led to a linear decrease in the response current of the electrode over the range from 1.0 × 10−8 to 5.0 × 10−6 mol L−1of MA. The obtained immunosensor displayed excellent catalytic reduction toward H2O2 due to high activity and selectivity of PB. The influence of relevant experimental variables, including the construction of immunosensor platform, the amount of MPS and the time of immunoaction, was examined and optimized.  相似文献   

8.
A sandwich-type electrochemical immunosensor for the detection of carbohydrate antigen 19-9 (CA 19-9) antigen based on the immobilization of primary antibody (Ab1) on three dimensional ordered macroporous magnetic (3DOMM) electrode, and the direct electrochemistry of horseradish peroxidase (HRP) that was used as both the label of secondary antibody (Ab2) and the blocking reagent. The 3DOMM electrode was fabricated by introducing core–shell Au–SiO2@Fe3O4 nanospheres onto the surface of three dimensional ordered macroporous (3DOM) Au electrode via the application of an external magnet. Au nanoparticles functionalized SBA-15 (Au@SBA-15) was conjugated to the HRP labeled secondary antibody (HRP-Ab2) through the Au–SH or Au–NH3+ interaction, and HRP was also used as the block reagent. The formation of antigen–antibody complex made the combination of Au@SBA-15 and 3DOMM exhibit remarkable synergistic effects for accelerating direct electron transfer (DET) between HRP and the electrode. Under the optimal conditions, the DET current signal increased proportionally to CA 19-9 concentration in the range of 0.05 to 15.65 U mL−1 with a detection limit of 0.01 U mL−1. Moreover, the immunosensor showed high selectivity, good stability, satisfactory reproducibility and regeneration. Importantly, the developed method was used to assay clinical serum specimens, achieving a good relation with those obtained from the commercialized electrochemiluminescent method.  相似文献   

9.
Nanoporous gold (NPG) has recently received considerable attention in analytical electrochemistry because of its good conductivity and large specific surface area. A facile layer-by-layer assembly technique fabricated NPG was used to construct an electrochemical immunosensor for carcinoembryonic antigen (CEA). NPG was fabricated on glassy carbon (GC) electrode by alternatively assembling gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) using 1,4-benzenedimethanethiol as a cross-linker, and then AgNPs were dissolved with HNO3. The thionine was absorbed into the NPG and then gold nanostructure was electrodeposited on the surface through the electrochemical reduction of gold chloride tetrahydrate (HAuCl4). The anti-CEA was directly adsorbed on gold nanostructure fixed on the GC electrode. The linear range of the immunosensor was from 10 pg mL−1 to 100 ng mL−1 with a detection limit of 3 pg mL−1 (S/N = 3). The proposed immunosensor has high sensitivity, wide linear range, low detection limit, and good selectivity. The present method could be widely applied to construct other immunosensors.  相似文献   

10.
This article reports on carbon nanotube/manganese dioxide (CNT–MnO2) composites as electrochemical tags for non-enzymatic signal amplification in immunosensing. The synthesized CNT–MnO2 composites showed good electrochemical activity, electrical conductivity and stability. The electrochemical signal of CNT–MnO2 composites coated glassy carbon electrode (GCE) increased by nearly two orders of magnitude compared to bare GCE in hydrogen peroxide (H2O2) environment. CNT–MnO2 composite was subsequently validated as electrochemical tags for sensitive detection of α-fetoprotein (AFP), a tumor marker for diagnosing hepatocellular carcinoma. The electrochemical immunosensor demonstrated a linear response on a log-scale for AFP concentrations ranging from 0.2 to 100 ng mL−1. The limit of detection (LOD) was estimated to be 40 pg mL−1 (S/N = 3) in PBS buffer. Further measurements using AFP spiked plasma samples revealed the applicability of fabricated CNT–MnO2 composites for clinical and diagnostic applications.  相似文献   

11.
An ultrasensitive multiplexed immunoassay method was developed at a disposable immunosensor array using mesoporous platinum nanoparticles (M-Pt NPs) as nonenzymatic labels. M-Pt NPs were prepared by ultrasonic method and employed to label the secondary antibody (Ab2) for signal amplification. The immunosensor array was constructed by covalently immobilizing capture antibody (Ab1) on graphene modified screen printed carbon electrodes (SPECs). After the sandwich-type immunoreactions, the M-Pt-Ab2 was bound to immunosensor surface to catalyze the electro-reduction of H2O2 reaction, which produced detectable signals for readout of analytes. Using breast cancer related panel of tumor markers (CA125, CA153 and CEA) as model analytes, this method showed wide linear ranges of over 4 orders of magnitude with the detection limits of 0.002 U mL−1, 0.001 U mL−1 and 7.0 pg mL−1 for CA125, CA153 and CEA, respectively. The disposable immunosensor array possessed excellent clinical value in cancer screening as well as convenient point of care diagnostics.  相似文献   

12.
The development of an electrochemical immunosensor incorporated in a micro fluidic cell for quantification of citrinin (CIT) mycotoxin in rice samples is described for the first time. Both CIT present in rice samples and immobilized on a gold surface electrodeposited on a glassy carbon (GC) electrode modified with a cysteamine self-assembled monolayer were allowed to compete for the monoclonal mouse anti-CIT IgG antibody (mAb-CIT) present in solution. Then, an excess of rabbit anti mouse IgG (H + L) labelled with the horseradish peroxidase (secAb-HRP) was added, which reacts with the mAb-CIT which is in the immuno-complex formed with the immobilized CIT on the electrode surface. The HPR, in the presence of hydrogen peroxide (H2O2) catalyzes the oxidation of catechol (H2Q) whose back electrochemical reduction was detected on a GC electrode at −0.15 V vs Ag/AgCl by amperometric measurements. The current measured is proportional to the enzymatic activity and inversely proportional to the amount of CIT present in the rice samples. This immunosensor for CIT showed a range of work between 0.5 and 50 ng mL−1. The detection (LOD) and the quantification (LOQ) limits were 0.1 and 0.5 ng mL−1, respectively. The coefficients of variation intra- and inter-assays were less than 6%. The electrochemical detection could be done within 2 min and the assay total time was 45 min. The immunosensor was provided to undertake at least 80 determinations for different samples with a minimum previous pre-treatment. Our electrochemical immunosensor showed a higher sensitivity and reduced analysis time compared to other analytical methods such as chromatographic methods. This methodology is fast, selective and very sensitive. Thus, the immunosensor showed to be a very useful tool to determine CIT in samples of cereals, mainly rice samples.  相似文献   

13.
In this work, we reported a sandwiched luminol electrochemiluminescence (ECL) immunosensor using ZnO nanoparticles (ZnONPs) and glucose oxidase (GOD) decorated graphene as labels and in situ generated hydrogen peroxide as coreactant. In order to construct the base of the immunosensor, a hybrid architecture of Au nanoparticles and graphene by reduction of HAuCl4 and graphene oxide (GO) with ascorbic acid was prepared. The resulted hybrid architecture modified electrode provided an excellent platform for immobilization of antibody with good bioactivity and stability. Then, ZnONPs and GOD functionalized graphene labeled secondary antibody was designed for fabricating a novel sandwiched ECL immunosensor. Enhanced sensitivity was obtained by in situ generating hydrogen peroxide with glucose oxidase and the catalysis of ZnONPs to the ECL reaction of luminol–H2O2 system. The as-prepared ECL immunosensor exhibited excellent analytical property for the detection of carcinoembryonic antigen (CEA) in the range from 10 pg mL−1 to 80 ng mL−1 and with a detection limit of 3.3 pg mL−1 (S N−1 = 3). The amplification strategy performed good promise for clinical application of screening of cancer biomarkers.  相似文献   

14.
A new and disposable electrochemical immunosensor was designed for detection of alpha-fetoprotein (AFP), as a model analyte, with sensitivity enhancement based on enzyme-catalyzed silver deposition onto irregular-shaped gold nanoparticles (ISGNPs). The assay was carried out with a sandwich-type immunoassay protocol by using ISGNP-labeled anti-AFP antibodies conjugated with alkaline phosphatase (ALP–Ab2) as detection antibodies. The enzymatically catalytic deposition of silver on the electrode could be measured by stripping analysis in KCl solution due to the Ag/AgCl solid-state voltammetric process. Several labeling protocols including spherical gold nanoparticle-labeled ALP–Ab2 and ISGNP-labeled ALP–Ab2 were investigated for determination of AFP, and improved analytical properties were achieved with the ISGNP labeling. With the ISGNP labeling method, the effects of incubation time and incubation temperature for antigen-antibody reaction, and deposition time of silver on the current responses of the electrochemical immunosensors were also monitored. Under optimal conditions, the electrochemical immunosensor exhibited a wide dynamic range from 0.01 ng mL−1 to 200 ng mL−1 with a detection limit of 5.0 pg mL−1 AFP. The immunosensor displayed a good stability and acceptable reproducibility and accuracy. No significant differences at the 95% confidence level were encountered in the analysis of 10 clinical serum samples between the developed immunoassay and the commercially available electrochemiluminescent method for determination of AFP.  相似文献   

15.
This work describes the preparation of an electrochemical immunosensor for estradiol based on the surface modification of a screen printed carbon electrode with grafted p-aminobenzoic acid followed by covalent binding of streptavidin (Strept) and immobilization of biotinylated anti-estradiol (anti-estradiol-Biotin). The hormone determination was performed by applying a competitive immunoassay with peroxidase-labelled estradiol (HRP–estradiol) and measurement of the amperometric response at −200 mV using hydroquinone (HQ) as redox mediator. The calibration curve for estradiol exhibited a linear range between 1 and 250 pg mL−1 (r = 0.990) and a detection limit of 0.77 pg mL−1 was achieved. Cross-reactivity studies with other hormones related with estradiol at physiological concentration levels revealed the practical specificity of the developed method for estradiol. A good reproducibility, with RSD = 5.9% (n = 8) was also observed. The operating stability of a single bioelectrode modified with anti-estradiol-Biotin-Strept was nine days when it was stored at 8 °C under humid conditions between measurements. The developed immunosensor was applied to the analysis of certified serum and spiked urine samples with good results.  相似文献   

16.
In this paper, a simple and sensitive amperometric immunosensor for simultaneous detection of four biomarkers by using distinguishable redox-probes as signal tags was proposed for the first time. In sandwich immunoassay format, four kinds of capture antibodies (C-Ab) were immobilized by gold nanoparticles (AuNPs) electro-deposited on the surface of glass carbon electrode (GCE); four kinds of detection antibodies (D-Ab) labeled with different redox probes (including anthraquinone 2-carboxylic acid (Aq), thionine (Thi), ferrocenecarboxylic acid (Fc) and tris(2,2’-bipyridine-4,4’-dicarboxylic acid) cobalt(III) (Co(bpy)33+)), were combined with 3,4,9,10-perylenetetracarboxylic acid (PTCA), poly(diallyldimethylammonium chloride) (PDDA) and AuNPs functionalized carbon nanotubes, and served as signal tracer. When four target antigens were present, differential pulse voltammetry (DPV) scan exhibited four well-resolved peaks, each peak indicated one antigen, and its intensity was quantitative correlational to the concentration of corresponding analyte. To verify the strategy, four biomarkers for diagnosis of colorectal carcinoma, including carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 19-9 CA125, and CA242, were used as model analytes, the immunosensor exhibited high selectivity and sensitivity, and peak current displayed good linear relationship to logarithm concentration in the ranges from 0.016 to 15 ng mL−1 for CEA; 0.008 to 10 ng mL−1 for CA19-9; 0.012 to 12 ng mL−1 for CA125; 0.010 to 10 ng mL−1 for CA242, and low detection limits of 4.2, 2.8, 3.3 and 3.8 pg mL−1, respectively.  相似文献   

17.
A novel Cu2O-SiO2 nanostructured particle was synthesized by a solution-phase method and was adopted for construction of a label-free amperometric immunosensor. The porous Cu2O-SiO2 nanoparticles had good redox electrochemical activity, large surface-to-volume ratio, film-forming ability and high stability. The physical morphology and structure of Cu2O-SiO2 nanoparticles were examined by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The chemical component of Cu2O-SiO2 was confirmed by X-ray photoelectron spectroscopy (XPS) and auger electron spectra (AES). The electrode modification process was probed by cyclic voltammetry (CV) and the performance of the immunosensor was studied by differential pulse voltammetry (DPV) measurements. To improve the analytical characteristics of the immunosensor, the experimental conditions were optimized. The immunosensor exhibited a good response to ferritin in ranges from 1.0 to 5.0 and 5.0 to 120.0 ng mL−1 with a detection limit of 0.4 ng mL−1. The fabricated immunosensor could make a low-cost, sensitive, quantitative detection of ferritin, and would have a potential application in clinical immunoassays.  相似文献   

18.
A novel amperometric magnetoimmunosensor using an indirect competitive format is developed for the sensitive detection of the amino-terminal pro-B-type natriuretic peptide (NT-proBNP). The immunosensor design involves the covalent immobilization of the antigen onto carboxylic-modified magnetic beads (HOOC-MBs) activated with N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS), and further incubation in a mixture solution containing variable concentrations of the antigen and a fixed concentration of an HRP-labeled detection antibody. Accordingly, the target NT-proBNP in the sample and that immobilized on the MBs compete for binding to a fixed amount of the specific HRP-labeled secondary antibody. The immunoconjugate-bearing MBs are captured by a magnet placed under the surface of a disposable gold screen-printed electrode (Au/SPE). The amperometric responses measured at –0.10 V (vs. a Ag pseudo-reference electrode), upon addition of 3,3′,5,5′-tetramethylbenzidine (TMB) as electron transfer mediator and H2O2 as the enzyme substrate, are used to monitor the affinity reaction. The developed magnetoimmunosensor provides attractive analytical characteristics in 10-times diluted human serum samples, exhibiting a linear range of clinical usefulness (0.12–42.9 ng mL−1) and a detection limit of 0.02 ng mL−1, which can be used in clinical diagnosis of chronic heart failure in the elderly and for classifying patients at risk of death after heart transplantation. The magnetoimmunosensor was successfully applied to the analysis of spiked human serum samples.  相似文献   

19.
An amperometric immunoassay for the determination of tumor necrosis factor alpha (TNFα) protein biomarker in human serum based on the use of magnetic microbeads (MBs) and disposable screen-printed carbon electrodes (SPCEs) has been developed. The specifically modified microbeads were magnetically captured on the working electrode surface and the amperometric responses were measured at −0.20 V (vs. Ag pseudo-reference electrode), upon addition of hydroquinone (HQ) as electron transfer mediator and H2O2 as the enzyme substrate. After a thorough optimization of the assay, extremely low limits of detection were achieved: 2.0 pg mL−1 (36 fM) and 5.8 pg mL−1 (105 fM) for standard solutions and spiked human serum, respectively. The simplicity, robustness and this clinically interesting LOD proved the developed TNFα immunoassay as a good contender for real clinical application.  相似文献   

20.
A membrane based heterogeneous competitive enzyme-linked immunosorbent assay (ELISA) was used in this work to develop an immunosensor for the detection of a common herbicide, isoproturon. A screen-printed carbon working electrode with carbon counter and silver–silver chloride pseudo-reference electrode was utilized incorporating a membrane fixed into intimate contact with the working electrode to facilitate signal transduction. The membrane containing an immobilized isoproturon–ovalbumin conjugate was laminated onto the carbon working electrode and horseradish peroxidase (HRP) labeled polyclonal antibody was then applied for the competitive assay. Two different amperometric systems, hydroquinone and o-phenylenediamine (OPD) mediation reduction were utilised and the properties of the resultant sensors were compared. A flow injection apparatus was also developed utilising the immunosensor. Limits of detection for isoproturon (LLD90) were found to be as low as 0.84 ng mL−1. The senor was also validated using spiked extracted soil samples and also isoproturon contaminated samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号