首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Protein kinases are general and significant regulators in the cell signaling pathway, and it is still greatly desired to achieve simple and quick kinase detection. Herein, we develop a simple and sensitive photoelectrochemical strategy for the detection of protein kinase activity based on the bond between phosphorylated peptide and phosphorylated graphite-like carbon nitride (P-g-C3N4) conjugates triggered by Zr4+ ion coordination. Under optimal conditions, the increased photocurrent is proportional to the protein kinase A (PKA) concentration ranging from 0.05 to 50 U/mL with a detection limit of 0.077 U/mL. Moreover, this photoelectrochemical assay can be also applied to quantitative analysis of kinase inhibition. The results indicated that the IC50 value (inhibitor concentration producing 50% inhibitor) for ellagic acid was 9.1 μM. Moreover, the developed method is further applied to detect PKA activity in real samples, which contains serum from healthy person and gastric cancer patients and breast tissue from healthy person and breast cancer patients. Therefore, the established protocol provides a new and simple tool for assay of kinase activity and its inhibitors with low cost and high sensitivity.  相似文献   

2.
A novel, sensitive and versatile electrogenerated chemiluminescence biosensing platform is developed for monitoring activity and inhibition of protein kinase based on Ru(bpy)32+ functionalized gold nanoparticles (Ru(bpy)32+-AuNPs) mediated signal transduction. Ru(bpy)32+-AuNPs were formed by functionalizing AuNPs with Ru(bpy)32+ through electrostatic interactions and were used as thiol-versatile signal probe. Casein kinase II (CK2) and cAMP-dependent protein kinase (PKA), two classical protein kinase implicated in disease, were chosen as model protein kinases while a CK2-specific peptide (CRRRADDSDDDDD) and a PKA-specific peptide (CLRRASLG) were employed as molecular substrate for CK2 and PKA, respectively. The specific peptide was self-assembled onto the gold electrode via Au–S bond to form ECL biosensor. Upon thiophosphorylation of the peptide on the electrode in the presence of protein kinase and co-substrate adenosine-5’-(γ-thio)-triphosphate, Ru(bpy)32+-AuNPs was assembled onto the thiophosphorylated peptides via Au–S bond. The Ru(bpy)32+-AuNPs attached on electrode surface produce detectable ECL signal in the presence of coreactant tripropylamine. This strategy is promising for multiple protein kinase assay and kinase inhibitor profiling with high sensitivity, good selectivity and versatility. The ECL intensity is proportional to the activity of CK2 in the range of 0.01–0.5 unit/mL with a low detection limit of 0.008 unit/mL and to the activity of PKA in the range of 0.01–0.4 unit/mL with a detection limit of 0.005 unit/mL. Additionally, this assay was applied to the detection of CK2 in serum samples and the inhibition of CK2 and PKA. This work demonstrates that the developed ECL method can provide a sensitive and versatile platform for the detection of kinase activity and drug-screening.  相似文献   

3.
In this report, we demonstrate the application of Au nanoparticles in the electrochemical detection of protein phosphorylation. The method is based on the labeling of a specific phosphorylation event with Au nanoparticles, followed by electrochemical detection. The phosphorylation reaction is coupled with the biotinylation of the kinase substrate using a biotin-modified adenosine 5′-triphosphate [γ]-biotinyl-3,6,9-trioxaundecanediamine (ATP) as the co-substrate. When the phosphorylated and biotinylated kinase substrate is exposed to streptavidin-coated Au nanoparticles, the high affinity between the streptavidin and biotin resulted in the attachment of Au nanoparticles on the kinase substrate. The electrochemical response obtained from Au nanoparticles enables monitoring the activity of the kinase and its substrate, as well as the inhibition of small molecule inhibitors on protein phosphorylation. We determined the activity of Src non-receptor protein tyrosine kinase, p60c-Src and protein kinase A in combination with their highly specific substrate peptides Raytide™ EL and Kemptide, respectively. The detection limits for Raytide™ EL and Kemptide were determined as 5 and 10 μM, (S/N = 3), and the detection limits for the kinase activity of p60c-Src and protein kinase A (PKA) were determined as 5 and 10 U mL−1, (S/N = 3), respectively. Tyrosine kinase reactions were also performed in the presence of a well-defined inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine (PP2), and its negative control molecule, 4-amino-7-phenylpyrazol[3,4-d] pyrimidine (PP3), which had no inhibition effect. Based on the dependency of Au nanoparticle signal on inhibitor concentration, IC50 value, half-maximal inhibition of the inhibitors was estimated. IC50 values of PP2, genistein and herbimycin A to p60c-Src were detected as 5 nM, 25 μM and 900 nM, respectively. The inhibition of PKA activity on Kemptide using ellagic acid was monitored with an IC50 of 3.5 μM. The performance of the biosensor was optimized including the kinase reaction, incubation with streptavidin-coated Au nanoparticles, and the small molecule inhibitors. Kinase peptide-modified electrochemical biosensors are promising candidates for cost-effective kinase activity and inhibitor screening assays.  相似文献   

4.
A highly sensitive nanomechanical cantilever sensor assay based on an electrical measurement has been developed for detecting activated cyclic adenosine monophosphate (cyclic AMP)-dependent protein kinase (PKA). Employing a peptide derived from the heat-stable protein kinase inhibitor (PKI), a magnetic bead system was first selected as a vehicle to immobilize the PKI-(5-24) peptide for capturing PKA catalytic subunit and the activity assay was applied for indirectly assessing the binding. Synergistic interactions of adenosine triphosphate (ATP) and the peptide inhibitor with the kinase were then investigated by a solution phase capillary electrophoretic assay, and by surface plasmon resonance technology which involved immobilization of the peptide inhibitor. After systemically evaluated by a homogeneous direct binding assay, the ATP-dependent recognition of the catalytic subunit of PKA by PKI-(5-24) was successfully transferred on to the nanomechanical cantilevers at protein concentrations of 6.6 pM-66 nM, exhibiting much higher sensitivity and wider dynamic range than the conventional activity assay. Thus, direct assessment of activated kinases using the cantilever sensor system functionalized with specific peptide inhibitors holds great promise in analytical applications and clinical medicine.  相似文献   

5.
We presented a novel electrogenerated chemiluminescence (ECL) biosensor for monitoring the activity and inhibition of protein kinases based on signal amplification using enzyme-functionalized Au NPs nanoprobe. In this design, the biotin-DNA labeled glucose oxidase/Au NPs (GOx/Au NPs/DNA-biotin) nanoprobes, prepared by conjugating Au NPs with biotin-DNA and GOx, were bound to the biotinylated anti-phosphoserine labeled phosphorylated peptide modified electrode surface through a biotin−avidin interaction. The GOx assembled on the nanoprobe can catalyze glucose to generate H2O2 in the presence of O2 while the ECL reaction occurred in the luminol ECL biosensor. At a higher concentration of kinase, there are more nanoprobes on the electrode, which gives a higher amount of GOx at the electrode interface and thus higher electrocatalytic efficiency to the luminol ECL reaction. Therefore, the activity of protein kinases can be monitored by ECL with high sensitivity. Protein kinase A (PKA), an important enzyme in regulation of glycogen, sugar, and lipid metabolism in the human body, was used as a model to confirm the present proof-of-concept strategy. The as-proposed biosensor presents high sensitivity, low detection limit of 0.013 U mL−1, wide linear range (from 0.02 to 40 U mL−1), and excellent stability. Moreover, this biosensor can also be used for quantitative analysis of kinase inhibition. On the basis of the inhibitor concentration dependent ECL signal, the half-maximal inhibition value IC50 of ellagic acid, a typical PKA inhibitor, was estimated, which is in agreement with those obtained using the conventional kinase assay. The simple and sensitive biosensor is promising in developing a high-through assay of in vitro kinase activity and inhibitor screening for clinic diagnostic and drug development.  相似文献   

6.
Gao Y  Wang G  Huang H  Hu J  Shah SM  Su X 《Talanta》2011,85(2):1075-1080
In this paper, we utilized the instinct peroxidase-like property of Fe3O4 magnetic nanoparticles (MNPs) to establish a new fluorometric method for determination of hydrogen peroxide and glucose. In the presence of Fe3O4 MNPs as peroxidase mimetic catalyst, H2O2 was decomposed into radical that could quench the fluorescence of CdTe QDs more efficiently and rapidly. Then the oxidization of glucose by glucose oxidase was coupled with the fluorescence quenching of CdTe QDs by H2O2 producer with Fe3O4 MNPs catalyst, which can be used to detect glucose. Under the optimal reaction conditions, a linear correlation was established between fluorescence intensity ratio I0/I and concentration of H2O2 from 1.8 × 10−7 to 9 × 10−4 mol/L with a detection limit of 1.8 × 10−8 mol/L. And a linear correlation was established between fluorescence intensity ratio I0/I and concentration of glucose from 1.6 × 10−6 to 1.6 × 10−4 mol/L with a detection limit of 1.0 × 10−6 mol/L. The proposed method was applied to the determination of glucose in human serum samples with satisfactory results.  相似文献   

7.
In this work, we proposed a simple co-mixing method to fabricate magnetic one-dimensional polyaniline (denoted as 1D-PANIs/MNPs). One-dimensional polyanilines (1D-PANIs) and magnetic nanoparticles (MNPs) were prepared by chemical oxidation and solvothermal methods, respectively. When MNPs and 1D-PANIs (with mass ratio 4:1) were co-mixed and vortexed evenly in a solvent (e.g., ethanol, water, acetonitrile), they could assemble into 1D-PANIs/MNPs spontaneously and thus be magnetically separable. To testify the feasibility of 1D-PANIs/MNPs in sample preparation, it was applied as the sorbent for magnetic solid phase extraction (MSPE) of fluoroquinolones (FQs) in honey samples. Under optimized conditions, a rapid, convenient, and efficient method for the determination of four FQs in honey samples by 1D-PANIs/MNPs-based MSPE coupling with high performance liquid chromatography with fluorescence detection (HPLC-FLD) was established. The limits of detection (LODs) for four FQs ranged from 0.4 to 1.4 ng g−1. The intra- and interday relative standard deviations (RSDs) were less than 17.6%. The recoveries of FQs for three spiked honey samples ranged from 86.3 to 121.3%, with RSDs of less than 16.3%.  相似文献   

8.
Shuang Qiu 《Talanta》2010,81(3):819-2153
A pseudo-homogeneous immunoextraction method based on gold-coated magnetic nanoparticles (MNPs) for the specific extraction and quantitative analysis of epitestosterone (17α-hydroxy-4-androsten-3-one, abbreviated as “ET”) from human urine samples by high-performance liquid chromatography (HPLC) has been developed. Half-IgG of anti-ET monoclonal antibodies were covalently immobilized onto (Fe3O4)core-Aushell (Fe3O4@Au) MNPs. An external magnetic field was applied to collect the MNPs which were then rinsed with distilled water followed by elution with absolute methanol to obtain ET as the analyte. The obtained extraction solution was analyzed by HPLC with UV detection (244 nm) within 12 min. The standard calibration curve for ET showed good linearity in the range of 20-200 ng mL−1 in phosphate-buffered saline (PBS) solutions with acceptable accuracy and precision. Limit of detection for ET was 0.06 ng mL−1 due to an enrichment factor of 100-fold was achieved. The results obtained by the present method for spiked human urine samples were in agreement with those from indirect competitive enzyme-linked immunoadsorbent assays (ELISAs). The antibody-conjugated Fe3O4@Au MNPs are novel materials for immunoaffinity extraction. Compared with the conventional technique using immunoaffinity column, the method described here for sample pretreatment was fast, highly specific, and easy to operate.  相似文献   

9.
Novel magnetic polyurethane flexible foam nanocomposites were synthesized by incorporation of aminopropyltriethoxysilane (APTS) functionalized magnetite nanoparticles (MNPs) via one-shot method. The functionalized MNPs (Fe3O4@APTS) were synthesized by co-precipitation of the Fe2+ and Fe3+ with NH4OH and further functionalization with APTS onto the surface of MNPs by sol–gel method. The magnetic core-shell NPs were used up to 3.0 % in the foam formulation and the magnetic nanocomposites prepared successfully. The results of thermogravimetric analysis (TGA) showed an increasing in thermal stability of polyurethane nanocomposite foam at initial, 5 and 10 %, and maximum thermal decomposition temperatures by incorporation of Fe3O4@APTS. In addition SEM images revealed the uniformity of the foam structures and decreasing in pore sizes. Furthermore, VSM result showed super paramagnetic behavior for Fe3O4@APTS-PU nanocomposites.  相似文献   

10.
Herein, we report the development of extremely sensitive sandwich assay of kanamycin using a combination of anti-kanamycin functionalized hybrid magnetic (Fe3O4) nanoparticles (MNPs) and 2-mercaptobenzothiazole labeled Au-core@Ag-shell nanoparticles as the recognition and surface-enhanced Raman scattering (SERS) substrate, respectively. The hybrid MNPs were first prepared via surface-mediated RAFT polymerization of N-acryloyl-l-glutamic acid in the presence of 2-(butylsulfanylcarbonylthiolsulfanyl) propionic acid-modified MNPs as a RAFT agent and then biofunctionalized with anti-kanamycin, which are both specific for kanamycin and can be collected via a simple magnet. After separating kanamycin from the sample matrix, they were sandwiched with the SERS substrate. According to our experimental results, the limit of detection (LOD) was determined to be 2 pg mL−1, this value being about 3–7 times more than sensitive than the LOD of previously reported results, which can be explained by the higher SERS activity of silver coated gold nanoparticles. The analysis time took less than 10 min, including washing and optical detection steps. Furthermore, the sandwich assay was evaluated for investigating the kanamycin specificity on neomycin, gentamycin and streptomycin and detecting kanamycin in artificially contaminated milk.  相似文献   

11.
In this work, we developed phosphate functionalized magnetic Fe3O4@C microspheres to immobilize Zr4+ ions for selective extraction and concentration of phosphopeptides for mass spectrometry analysis. Firstly, we synthesized Fe3O4@C magnetic microspheres as our previous work reported. Then, the microspheres were functionalized with phosphate groups through a simple hydrolysis reaction using 3-(trihydroxysilyl)propyl methylphosphate. And the Zr4+ ions were immobilized on phosphate-functionalized magnetic microspheres by using phosphate chelator. Finally, we successfully employed Zr4+-phosphate functionalized magnetic microspheres to selectively isolate the phosphopeptides from tryptic digests of standard protein and real samples including rat brain. All the experimental results demonstrate the enrichment efficiency and selectivity of the method we reported here.  相似文献   

12.
The poly(lactide-co-glycolide)-coated magnetic nanoparticles (PLGA MNPs) were prepared as carriers of doxorubicin (PLGA-DOX MNPs) through water-in-oil-in-water (W/O/W) emulsification method. The characteristics of PLGA-DOX MNPs were measured by using transmission electron microscopy (TEM) and vibrating-sampling magnetometry (VSM). It was found that the synthesized nanoparticles were spherical in shape with an average size of 100 ± 20 nm, low aggregation and good magnetic responsivity. Meanwhile, the drug content and encapsulation efficiency of nanoparticles can be achieved by varying the feed weight ratios of PLGA and DOX particles. These PLGA-DOX MNPs also demonstrated sustained release of DOX at 37 °C in buffer solution. Besides, influence of drug-loaded nanoparticles on in vitro cytotoxicity was determined by MTT assay, while cellular apoptosis was detected by Annexin V-FITC apoptosis detection kit. The results showed that PLGA-DOX MNPs retained significant antitumor activities. Therefore, PLGA-DOX MNPs might be considered a promising drug delivery system for cancer chemotherapy.  相似文献   

13.
We presented a new strategy for ultrasensitive detection of DNA sequences based on the novel detection probe which was labeled with Ag+ using metallothionein (MT) as a bridge. The assay relied on a sandwich-type DNA hybridization in which the DNA targets were first hybridized to the captured oligonucleotide probes immobilized on Fe3O4@Au composite magnetic nanoparticles (MNPs), and then the Ag+-modified detection probes were used to monitor the presence of the specific DNA targets. After being anchored on the hybrids, Ag+ was released down through acidic treatment and sensitively determined by a coupling flow injection–chemiluminescent reaction system (Ag+–Mn2+–K2S2O8–H3PO4–luminol) (FI–CL). The experiment results showed that the CL intensities increased linearly with the concentrations of DNA targets in the range from 10 to 500 pmol L−1 with a detection limit of 3.3 pmol L−1. The high sensitivity in this work may be ascribed to the high molar ratio of Ag+–MT, the sensitive determination of Ag+ by the coupling FI–CL reaction system and the perfect magnetic separation based on Fe3O4@Au composite MNPs. Moreover, the proposed strategy exhibited excellent selectivity against the mismatched DNA sequences and could be applied to real samples analysis.  相似文献   

14.
Excess synaptic glutamate release has pathological consequences, and the inhibition of glutamate release is crucial for neuroprotection. Kaempferol 3-rhamnoside (KR) is a flavonoid isolated from Schima superba with neuroprotective properties, and its effecton the release of glutamate from rat cerebrocortical nerve terminals was investigated. KR produced a concentration-dependent inhibition of 4-aminopyridine (4-AP)-evoked glutamate release with half-maximal inhibitory concentration value of 17 µM. The inhibition of glutamate release by KR was completely abolished by the omission of external Ca2+ or the depletion of glutamate in synaptic vesicles, and it was unaffected by blocking carrier-mediated release. In addition, KR reduced the 4-AP-evoked increase in Ca2+ concentration, while it did not affect 4-AP-evoked membrane potential depolarization. The application of selective antagonists of voltage-dependent Ca2+ channels revealed that the KR-mediated inhibition of glutamate release involved the suppression of P/Q-type Ca2+ channel activity. Furthermore, the inhibition of release was abolished by the calmodulin antagonist, W7, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor, KN62, but not by the protein kinase A (PKA) inhibitor, H89, or the protein kinase C (PKC) inhibitor, GF109203X. We also found that KR reduced the 4-AP-induced increase in phosphorylation of CaMKII and its substrate synapsin I. Thus, the effect of KR on evoked glutamate release is likely linked to a decrease in P/Q-type Ca2+ channel activity, as well as to the consequent reduction in the CaMKII/synapsin I pathway.  相似文献   

15.
β−cyclodextrins (β−CD)-based inclusion complexes of CoFe2O4 magnetic nanoparticles (MNPs) were prepared and used as catalysts for chemiluminescence (CL) system using the luminol-hydrogen peroxide CL reaction as a model. The as-prepared inclusion complexes were characterized by XRD (X-ray diffraction), TGA (thermal gravimetric analysis) and FT-IR. The oxidation reaction between luminol and hydrogen peroxide in basic media initiated CL. The effect of β−CD-based inclusion complexes of CoFe2O4 magnetic nanoparticles and naked CoFe2O4 magnetic nanoparticles on the luminol-hydrogen peroxide CL system was investigated. It was found that inclusion complexes between β−CD and CoFe2O4 magnetic nanoparticles could greatly enhance the CL of the luminol-hydrogen peroxide system. Investigation on the kinetic curves and the chemiluminescence spectra of the luminol-hydrogen peroxide system demonstrates that addition of CoFe2O4 MNPs or inclusion complexes between β−CD and CoFe2O4 MNPs does not produce a new luminophor of the chemiluminescent reaction. The luminophor for the CL system was still the excited-state 3-aminophthalate anions (3-APA*). The enhanced CL signals were thus ascribed to the possible catalysis from CoFe2O4 MNPs or inclusion complexes between β−CD and CoFe2O4 nanoparticles. The feasibility of employing the proposed system for hydrogen peroxide sensing was also investigated. Experimental results showed that the CL emission intensity was linear with hydrogen peroxide concentration in the range of 1.0 × 10−7 to 4.0 × 10−6 mol L−1 with a detection limit of 2.0 × 10−8 mol L−1 under optimized conditions. The proposed method has been used to determine hydrogen peroxide in water samples successfully.  相似文献   

16.
Despite the rapid development of nanomaterials and nanotechnology, it is still desirable to develop novel nanoparticle-based techniques which are cost-effective, timesaving, and environment-friendly, and with ease of operation and procedural simplicity, for assay of target analytes. In the work discussed in this paper, the dye fluorescein isothiocyanate (FITC) was conjugated to 1,6-hexanediamine (HDA)-capped iron oxide magnetic nanoparticles (FITC–HDA Fe3O4 MNPs), and the product was characterized. HDA ligands on the surface of Fe3O4 MNPs can bind 2,4,6-trinitrotoluene (TNT) to form TNT anions by acid–base pairing interaction. Formation of TNT anions, and captured TNT substantially affect the emission of FITC on the surface of the Fe3O4 MNPs, resulting in quenching of the fluorescence at 519 nm. A novel FITC–HDA Fe3O4 MNPs-based probe featuring chemosensing and magnetic separation has therefore been constructed. i.e. FITC–HDA Fe3O4 MNPs had a highly selective fluorescence response and enabled magnetic separation of TNT from other nitroaromatic compounds by quenching of the emission of FITC and capture of TNT in aqueous solution. Very good linearity was observed for TNT concentrations in the range 0.05–1.5 μmol?L?1, with a detection limit of 37.2 nmol?L?1 and RSD of 4.7 % (n?=?7). Approximately 12 % of the total amount of TNT was captured. The proposed methods are well-suited to trace detection and capture of TNT in aqueous solution.
Figure
Iron oxide magnetic nanoparticles-based selective fluorescent response and magnetic separation probe for 2,4,6-trinitrotoluene  相似文献   

17.
This study presented an approach to prepare monodisperse immobilized Ti4+ affinity chromatography (Ti4+-IMAC) microspheres for specific enrichment of phosphopeptides in phosphoproteome analysis. Monodisperse polystyrene seed microspheres with a diameter of ca. 4.8 μm were first prepared by a dispersion polymerization method. Monodisperse microspheres with a diameter of ca. 13 μm were prepared using the seed microspheres by a single-step swelling and polymerization method. Ti4+ ion was immobilized after chemical modification of the microspheres with phosphonate groups. The specificity of the Ti4+-IMAC microspheres to phosphopeptides was demonstrated by selective enrichment of phosphopeptides from mixture of tryptic digests of α-casein and bovine serum albumin (BSA) at molar ratio of 1 to 500 by MALDI-TOF MS analysis. The sensitivity of detection for phosphopeptides determined by MALDI-TOF MS was as low as 5 fmol for standard tryptic digest of β-casein. The Ti4+-IMAC microspheres were compared with commercial Fe3+-IMAC adsorbent and homemade Zr4+-IMAC microspheres for enrichment of phosphopeptides. The phosphopeptides and non-phosphopeptides identified by Fe3+-IMAC, Zr4+-IMAC and Ti4+-IMAC methods were 26, 114, 127 and 181, 11, 11 respectively for the same tryptic digest samples. The results indicated that the Ti4+-IMAC had the best performance for enrichment of phosphopeptides.  相似文献   

18.
Protein kinase plays a vital role in regulating signal‐transduction pathways and its simple and quick detection is highly desirable because traditional kinase assays typically rely on a time‐consuming kinase‐phosphorylation process (ca. 1 h). Herein, we report a new and rapid fluorescence‐based sensing platform for probing the activity of protein kinase that is based on the super‐quenching capacity of graphene oxide (GO) nanosheets and specific recognition of the aptameric peptide (FITC‐IP20). On the GO/peptide platform, the fluorescence quenching of FITC‐IP20 that is adsorbed onto GO can be restored by selective binding of active protein kinase to the aptameric peptide, thereby resulting in the fast switch‐on detection of kinase activity (ca. 15 min). The feasibility of this method has been demonstrated by the sensitive measurement of the activity of cAMP‐dependent protein kinase (PKA), with a detection limit of 0.053 mU μL?1. This assay technique was also successfully applied to the detection of kinase activation in cell lysate.  相似文献   

19.
BiFeO3 magnetic nanoparticles (BFO MNPs) are used as a catalyst to develop an ultrasensitive method for the determination of H2O2. It is found that BFO MNPs can catalyze the decomposition of H2O2 to produce OH radicals, which in turn oxidize the weakly fluorescent benzoic acid to a strongly fluorescent hydroxylated product with a maximum emission at 405 nm. This makes it possible to sensitively quantify traces of H2O2. Under optimized conditions, the fluorescence intensity is observed to be well linearly correlated with H2O2 concentration from 2.0 × 10−8 to 2.0 × 10−5 mol L−1 with a detection limit of 4.5 × 10−9 mol L−1 (S/N = 3). In addition, a selective method for glucose determination is developed by using both glucose oxidase and BFO MNPs, which has a linear range for glucose concentration from 1.0 × 10−6 to 1.0 × 10−4 mol L−1 with a detection limit of 5.0 × 10−7 mol L−1. These new methods have been successfully applied for the determination of H2O2 in rainwater and glucose in human serum samples.  相似文献   

20.
采用溶剂热法制备了Fe3O4磁性纳米粒子(MNPs), 以戊二醛为交联剂, 将亲和素共价固定于MNPs表面. 用透射电子显微镜(TEM)、 X射线衍射(XRD)、 紫外-可见吸收光谱(UV-Vis)、 傅里叶变换红外光谱(FTIR)和荧光光谱等手段对蛋白固定过程进行了监控和表征. 采用荧光光谱法评价了固定亲和素的磁性纳米粒子(Avi-MNPs)的活性, 并将Avi-MNPs应用于分光光度法测定蛋白A的含量. TEM结果表明, 功能化前后MNPs的粒度分布均匀, 粒径大小分别约为30和50 nm. XRD分析结果表明, MNPs与Fe3O4的特征衍射峰完全一致, 晶体纯度良好. UV-Vis, FTIR和荧光光谱结果表明, 亲和素已固定在MNPs表面. Avi-MNPs活性评价结果表明, 其结合生物素的活力为4.706 U/mg Avi-MNPs, 低于游离的亲和素活力(14.1 U/mg D-biotin). 该方法用于检测蛋白A含量比传统酶联免疫法省时、 省力, 且对检测仪器要求低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号