首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of molecularly imprinted polymers in the selective adsorption of macromolecules such as proteins by monolithic protein‐imprinted columns requires a macroporous structure, which can be provided by cryogelation at low temperature in which the formation of ice crystals gives a porous structure to the molecularly imprinted polymer. In this study, we applied this technique to synthesize lysozyme‐imprinted polyacrylamide cryogels containing 8% w/v of total monomers and 0.3% w/v of lysozyme. The synthesized cryogel was sponge‐like and elastic with very fast swelling and reshaping properties, showing a swelling ratio of 24.5 ± 3 and gel fraction yield of about 72%. It showed an imprinting effect of 1.58 and a separation factor of 1.37 for cytochrome c as the competing protein. Adsorption studies on the cryogel revealed that it follows the Langmuir isotherm, with a maximum theoretical adsorption capacity of 36.3 mg lysozyme per gram of cryogel. Additionally, it was shown that a salt‐free rebinding solution at low flow rate and pH = 7.0 is favorable for lysozyme rebinding. This kind of monolithic column promises a wide range of application in separation of various biomolecules due to its preparation simplicity, good rebinding characteristics, and macroporosity.  相似文献   

2.
Micro-contact imprinting has been used to form thin-film molecular imprints of ovalbumin (OVA) in polymers supported on glass slides. Thermocalorimetric data was used to optimise the choice of functional monomer and cross-linker to maximise selectivity and minimise non-specific recognition.A polymer comprising polyethyleneglycol 400 dimethacrylate (95 vol.%) and methacrylic acid (5 vol.%) showed both maximum recognition for OVA when made as a molecularly imprinted polymer (MIP), and minimal recognition when made as a non-imprinted, i.e. control polymer. OVA rebinding to the molecularly imprinted polymer, from a buffered 2 µM OVA solution, was 1.55 × 10− 11 mol cm− 2, while the control polymer showed 10-fold less re-binding, i.e. 0.154 × 10− 11 mol cm− 2.Experiments in which human serum albumin (HSA), conalbumin, ovomucoid or lysozyme, were re-bound to the polymers, either as single proteins or in competition with OVA, showed them to have low affinity for the polymer formulation used. Of the competing proteins examined, in non-competitive binding experiments, HSA showed the greatest affinity 0.45 × 10− 11 mol cm− 2 for the OVA imprinted polymer. In two protein competition experiments, i.e. with OVA and a competing protein present at equal concentrations (2 µM), OVA binding to the OVA imprinted polymer was in all cases significantly greater than that of the competitor.  相似文献   

3.
A new approach, combining metal coordination with the molecular imprinting technique, was developed to prepare affinity materials. Magnetic poly(glycidyl methacrylate) microspheres in monosize form were used for specific recognition toward the target protein. The magnetic poly(glycidyl methacrylate) microspheres were prepared by dispersion polymerization in the presence of magnetite nanopowder. Surface imprinted magnetic poly(glycidyl methacrylate) microspheres based on metal coordination were prepared and used for the selective recognition of human serum albumin. Iminodiacetic acid was used as the metal coordinating agent and human serum albumin was anchored by Cu2+ ions on the surface of magnetic poly(glycidyl methacrylate) microspheres by metal coordination. The magnetic poly(glycidyl methacrylate) microspheres were coated with a polymer formed by condensation of tetraethyl orthosilicate and 3‐aminopropyltrimethoxysilane. The human serum albumin imprinted magnetic poly(glycidyl methacrylate) microspheres were characterized by scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy and particle size analysis. The maximum adsorption capacity of human serum albumin imprinted magnetic poly(glycidyl methacrylate) microspheres was 37.7 mg/g polymer at pH 6.0. The selectivity experiments of human serum albumin imprinted magnetic poly(glycidyl methacrylate) microspheres prepared with different concentrations in the presence of lysozyme, bovine serum albumin and cytochrome C were performed in order to determine the relative selectivity coefficients.  相似文献   

4.
In this study, poly(amino acid)-based thermoresponsive molecularly imprinted magnetic nanoparticles for recognition and release of lysozyme was prepared via surface imprinting method. For constructing the molecularly imprinted polymer (MIP) layer, amino acid-based thermoresponsive monomer (N-methacryloyl-l-alanine methyl ester, MA-L-Ala-OMe) was mainly selected for the functional monomer along with N,N′-methylenebis(acrylamide) as the crosslinker. The resultant magnetic MIP nanoparticles were characterized in detail. Meanwhile, the dynamic light scattering studies and swelling ratios measurements were carried out for demonstrating the thermoresponsive property of the imprinted nanoparticles. The prepared magnetic MIP nanoparticles showed good adsorption capacity and selective recognition properties to lysozyme. Moreover, the fast adsorption process could reach equilibrium within 15 min. Importantly, the capture and release of lysozyme could be easily realized simply by altering the temperature of aqueous solution. Furthermore, the prepared imprinted nanoparticles were applied to separate lysozyme from the real egg white samples. The results proved that the thermoresponsive MIPs based on MA-L-Ala-OMe have great potential for selectively enriching target proteins in real samples.  相似文献   

5.
Molecularly imprinted polymers (MIPs) selective for lysozyme were prepared on SPR sensor chips by radical co-polymerization with acrylic acid and N,N′-methylenebisacrylamide. Gold-coated SPR sensor chips were modified with N,N′-bis(acryloyl)cystamine, on which MIP thin films were covalently conjugated. The presence of NaCl during the polymerization and the re-binding tests affected the selectivity and the optimization of NaCl concentration in the pre-polymerization mixture and the re-binding buffer could enhance the selectivity in the target protein sensing. When the lysozyme-imprinted polymer thin films were prepared in the presence of 40 mM NaCl, the selectivity factor (target protein bound/reference protein bound) of MIP in the re-binding buffer containing 20 mM NaCl was 9.8, meanwhile, that of MIP in the re-binding buffer without NaCl was 1.2. A combination of SPR sensing technology with protein-imprinted thin films is a promising tool for the construction of selective protein sensors.  相似文献   

6.
Molecularly imprinted polymers are synthetic antibody mimics formed by the crosslinking of organic or inorganic polymers in the presence of an analyte which yields recognitive polymer networks with specific binding pockets for that biomolecule. Surface imprinted polymers were synthesized via a novel technique for the specific recognition of bovine serum albumin (BSA). Thin films of recognitive networks based on 2-(dimethylamino)ethyl methacrylate (DMAEMA) as the functional monomer and varying amounts of either N,N′-methylenebisacrylamide (MBA) or poly(ethylene glycol) (400) dimethacrylate (PEG400DMA) as the crosslinking agent were synthesized via UV free-radical polymerization and characterized. A clear and reproducible increase in recognition of the template BSA was demonstrated for these systems at 1.6-2.5 times more BSA recognized by the MIP sample relative to the control polymers. Additionally, these polymers exhibited selective recognition of the template relative to competing proteins with up to 2.9 times more BSA adsorbed than either glucose oxidase or bovine hemoglobin. These synthetic antibody mimics hold significant promise as the next generation of robust recognition elements in a wide range of bioassay and biosensor applications.  相似文献   

7.
A phosphate-selective molecularly imprinted polymer was prepared using 1-allyl-2-thiourea as a functional monomer, and the binding ability and selectivity of the polymer were evaluated. The imprinted polymer showed high binding ability to and selectivity for phosphate in aqueous media. The recoverability of phosphate from the imprinted polymer was also examined, and nearly 70% of highly concentrated phosphate could be recovered.  相似文献   

8.
Summary Molecularly imprinted polymers were prepared using 2-vinylpyridine and/or methacrylic acid as functional monomers in a self-assembly imprinting protocol. The resulting polymers were analyzed in aqueous media, and the effects from the pH of the mobile phase and the degree of added organic solvent were investigated. The results are indicative of the importance of ionic bonds in conjunction with hydrophobic interactions in the formation of the complexes between the analyte and the polymers.  相似文献   

9.
环丙沙星分子印迹聚合物的合成及识别性能研究   总被引:1,自引:0,他引:1  
采用分子印迹技术合成了以环丙沙星为印迹分子,以甲基丙烯酸和4-乙烯基吡啶同时为功能单体的分子印迹聚合物。运用平衡结合实验研究了印迹聚合物的吸附特性和选择识别能力。Scatchard分析表明,在所研究的浓度范围内,分子印迹聚合物中形成了两类不同的结合位点。底物选择实验表明,这种聚合物对环丙沙星呈现高的选择结合能力。  相似文献   

10.
以(S) 酮洛芬为印迹分子利用分子印迹技术合成能识别(S) 酮洛芬的聚合物。聚合物作为高效液相色谱的固定相,消旋体酮洛芬在固定相能分开,同时聚合物还能将酮洛芬和布洛芬的混合物分开。  相似文献   

11.
苏立强  李继姣  高源 《化学通报》2016,79(4):349-354
以接枝双键的凹凸棒土(TM)为载体,槲皮素为模板分子,采用表面印迹技术制备对槲皮素具有特异吸附性能的分子印迹聚合物(MIP)。利用光谱法选择实验条件及对化合物表征。采用静态法研究聚合物对槲皮素的结合性能与识别性能。结果表明,该分子印迹材料对槲皮素具有特异的识别特性和优良的亲和性,提高了传统聚合物的结合率。以该印迹聚合物为固相萃取材料,结合高效液相色谱法,对白菜中的槲皮素进行分离富集,方法回收率为84.0%~90.6%,相对标准偏差低于5.6%。  相似文献   

12.
Chiral indanyl substituted tetra-armed cyclens (TAC) formed octadentate complexes with Na+. Since their four side arms stand up and are bundled to form quadruplicated helical structures, they can have Δ- or Λ-types enantiomers based on complex helicity. In this study, TAC-imprinted polymers were prepared using an ion-pair complex of the sodium salt of (S)-indanyl substituted TAC (TAC(S)) and 2-sulfoethyl methacrylate as a template, and ethylene glycol dimethacrylate as a cross-linker. Affinity of the obtained polymers for the TAC Na+ complexes was evaluated chromatographically and the imprinted polymer gave longer retention time for the template than that for its antipode where the separation factor was given to be 1.29-1.45 under the NaOH concentrations of 10-25 mM in the eluent. These results indicate that the imprinted polymer could discriminate helix structures of TAC Na+ complexes.  相似文献   

13.
Molecularly imprinted polymers (MIPs) represent a new class of materials possessing high selectivity and affinity for the target molecule. The main goal of this study was to prepare a galactose imprinted polymer and its potential application for the recognition of different saccharides. The selectivity of galactose imprinted polymer for several saccharides; glucose, mannose, fructose, maltose, lactose, sucrose and raffinose was investigated. Macroporous polymer was prepared utilizing ethyleneglycoldimethacrylate as a crosslinking agent, in the presence of galactose as a template molecule with acrylamide as a functional monomer. After the synthesis of polymer, galactose was removed by methanol:acetic acid washing. The selectivity of galactose imprinted polymer for other saccharides was utilized by batch rebinding assay. The arrangement of functional groups within cavities versus shape selectivity is discussed. The results showed that, the orientation of the functional groups was the dominating factor for the selectivity of galactose imprinted polymer. The dissociation constants of polymer were determined by Scatchard analysis.  相似文献   

14.
Molecularly imprinted polymers selective for phosphate were prepared with the two types of functional monomers, 1-allyl-2-thiourea and N-methyl-N′-(4-vinylphenyl)-thiourea, and the binding abilities of the polymers were evaluated. Phenylphosphonic acid or diphenyl phosphate were used as the template molecules and the imprinted polymers prepared with 1-allyl-2-thiourea as functional monomer showed high binding ability to phosphate in aqueous media and nearly 90% of phosphate could be recovered. Also, the imprinted polymer prepared with N-methyl-N′-(4-vinylphenyl)-thiourea as functional monomer had a high binding ability and specific interaction with phosphate in acetonitrile solution and over 90% of phosphate-derivatives could be recovered selectively.  相似文献   

15.
Molecular imprinting is an attractive biomimetic approach that creates specific recognition sites for the shape and functional group arrangement to template molecules. The purpose of this study is to prepare cytochrome c-imprinted poly(hydroxyethyl methacrylate) (PHEMA)-based supermacroporous cryogel which can be used for the separation of cytochrome c from protein mixtures. N-Methacryloyl-(L)-histidinemethylester (MAH) was used as the metal-coordinating monomer. In the first step, Cu(2+) was complexed with MAH, and the cytochrome c imprinted PHEMA (MIP) cryogel was prepared by free radical cryopolymerization initiated by N,N,N',N'-tetramethylene diamine at -12°C. After polymerization is completed, the template cytochrome c molecules were removed from the MIP cryogel using 0.5 M NaCl solution. The maximum cytochrome c binding amount was 126 mg/g polymer. Selective binding studies were performed in the presence of lysozyme and bovine serum albumin. The relative selectivity coefficients of MIP cryogel for cytochrome c/lysozyme and cytochrome c/bovine serum albumin were 1.7 and 5.2 times greater than those of the non-imprinted PHEMA cryogel, respectively. The selectivity of MIP cryogel for cytochrome c was also confirmed with fast protein liquid chromatography. The MIP cryogel could be used many times with no remarkable decrease in cytochrome c binding capacity.  相似文献   

16.
<正>Tetracycline selective electrode using molecularly imprinted polymer particles as quasi-ionophore was constructed the first time, and its performance was carefully characterized.Due to the specific recognition of tetracycline by the particles,the selectivity coefficients for routine interferences were less than 10~(-4).Benefited from the absence of tetracycline in the sensitive membrane and the optimized composition of the inner filling solution,the limit of detection of the electrode was reduced to about 2.5×10~(-8) mol/ L.It exhibited a good electrode slope 57.6 mV/decade near the theoretical Nernstian one,with a wide linear working range from 6.0×10~(-8) to 1.0×10~(-3) mol/L.The fabricated electrode should be used in pH 2-4,response time of which was less than 200 s when the concentration of tetracycline was higher than 1.0×10~(-6) mol/L and no more than 30 min at the concentration of 1.0×10~(-8) mol/L.  相似文献   

17.
A novel type of macroporous molecularly imprinted hybrid silica monolithic column was first developed for recognition of proteins. The macroporous silica-based monolithic skeleton was synthesized in a 4.6 mm i.d. stainless steel column by a mild sol–gel process with methyltrimethoxysilane (MTMS) as a sole precursor, and then vinyl groups were introduced onto the surface of the silica skeleton by chemical modification of γ-methacryloxypropyltrimethoxysilane (γ-MAPS). Subsequently, the molecularly imprinted polymer (MIP) coating was copolymerized and anchored onto the surface of the silica monolith. Bovine serum albumin (BSA) and lysozyme (Lyz), which differ greatly in molecular size, isoelectric point, and charge, were representatively selected for imprinted templates to evaluate recognition property of the hybrid silica-based MIP monolith. Some important factors, such as template–monomer molar ratio, total monomer concentration and crosslinking density, were systematically investigated. Under the optimum conditions, the obtained hybrid silica-based MIP monolith showed higher binding affinity for template than its corresponding non-imprinted (NIP) monolith. The imprinted factor (IF) for BSA and Lyz reached 9.07 and 6.52, respectively. Moreover, the hybrid silica-based MIP monolith displayed favorable binding characteristics for template over competitive protein. Compared with the imprinted silica beads for stationary phase and in situ organic polymer-based hydrogel MIP monolith, the hybrid silica MIP monolith exhibited higher recognition, stability and lifetime.  相似文献   

18.
Structural stability of the template is one of the most important considerations during the preparation of protein imprinting technology. To address this limitation, we propose a novel and versatile strategy of utilizing macromolecularly functional monomers to imprint biomacromolecules. Results from circular dichroism and synchronous fluorescence experiments reflect the macromolecularly functional monomers tendency to interact with the protein surface instead of permeating it and destroying the hydrogen bonds that maintain the protein’s structural stability, therefore stabilizing the template protein structure during the preparation of imprinted polymers. The imprinted polymers composed of macromolecularly functional monomers or their equivalent micromolecularly functional monomers over silica nanoparticles were characterized and carried out in batch rebinding test and competitive adsorption experiments. In batch rebinding test, the imprinted particles prepared with macromolecularly functional monomers exhibited an imprinting factor of 5.8 compared to those prepared by micromolecularly functional monomers with the imprinting factor of 3.4. The selective and competitive adsorption experiments also demonstrated the imprinted particles made by macromolecularly functional monomers possessed much better selectivity and specific recognition ability for template protein. Therefore, using macromolecularly functional monomers to imprint may overcome the mutability of biomacromolecule typically observed during the preparation of imprinted polymers, and thus promote the further development of imprinting technology.  相似文献   

19.
20.
Two series of molecularly imprinted polymers (MIPs) for the class-selective recognition of glucuronides have been prepared by using lipophilic substructures of the target analyte as template molecule and potent host monomers against oxyanions, that are expected to establish a strong stoichiometric interaction with the single carboxylic group of the template. The polymers were tested as stationary phases in liquid chromatography for specific recognition. A preliminary investigation of the imprinting properties of eleven MIPs was carried out, by comparing the retention time of the template and of structurally related compounds on the MIP column with that on the corresponding non-imprinted polymer (NIP). The two polymers showing the best performance were selected to further test cotinine, mycophenolic acid, testosterone and their respective glucuronides as model compounds. The high specificity obtained against glucuronides and the different chemical structure of the parent drug make the two MIPs class-selective imprinted receptors, also suitable for SPE application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号