首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New mixed-ligands complexes with empirical formulae: M(2,4′-bpy)2L2·H2O (M(II)Zn, Cd), Zn(2-bpy)3L2·4H2O, Cd(2-bpy)2L2·3H2O, M(phen)L2·2H2O (where M(II)=Mn, Ni, Zn, Cd; 2,4′-bpy=2,4′-bipyridine, 2-bpy=2,2′-bipyridine, phen=1,10-phenanthroline, L=HCOO) were prepared in pure solid state. They were characterized by chemical, thermal and X-ray powder diffraction analysis, IR spectroscopy, molar conductance in MeOH, DMF and DMSO. Examinations of OCO absorption bands suggest versatile coordination behaviour of obtained complexes. The 2,4′-bpy acts as monodentate ligand; 2-bpy and phen as chelating ligands. Thermal studies were performed in static air atmosphere. When the temperature raised the dehydration processes started. The final decomposition products, namely MO (Ni, Zn, Cd) and Mn3O4, were identified by X-ray diffraction.  相似文献   

2.
New mixed-ligand complexes of general formulae Mn(4-bpy)(CCl3COO)2⋅H2O, Ni(4-bpy)2(CCl3COO)2⋅2H2O and Zn(4-bpy)2(CCl3COO)2⋅2H2O (where 4-bpy=4,4’-bipyridine) were obtained and characterized. The IR spectra, conductivity measurements and other physical properties of these compounds were discussed. The central atoms M(II) form coordinate bonds with title ligands. The thermal behaviour of the synthesized complexes was studied in air. During heating the complexes decompose via different intermediate products to Mn3O4, NiO and ZnO; partial volatilization of ZnCl2was observed. A coupled TG-MS system was used to the analysis of the principal volatile thermal decomposition products of Mn(II) and Ni(II) complexes. The principal volatile mass fragments correspond to: H2O+, OH+, CO+ 2, HCl+, Cl+ 2, CCl+ and other. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
New mixed-ligand complexes with empirical formulae: Mn(2-bpy)1.5L2·2H2O, M(2-bpy)2L2·3H2O (M(II)=Co, Cu), Ni(2-bpy)3L2·4H2O and M(2,4’-bpy)2L2·2H2O (where 2-bpy=2,2’-bipyridine, 2,4’-bpy=2,4’-bipyridine; L=HCOO ) have been obtained in pure solid-state. The complexes were characterized by chemical and elemental analysis, IR and VIS spectroscopy, conductivity (in methanol and dimethylsulfoxide). The way of metal-ligand coordination discussed. The formate and 2,4’-bpy act as monodentate ligands and 2-bpy as chelate ligand. The new complexes with ligand isomerism were identified. During heating the complexes lose water molecules in one or two steps. Thermal decomposition after dehydration is multistage and yields corresponding metal oxides as final products. A coupled TG-MS system was used to analysis principal volatile thermal decomposition (or fragmentation) products of Ni(2,4’-bpy)2(HCOO)2·2H2O under dynamic air or argon atmosphere.  相似文献   

4.
New mixed-ligand complexes with empirical formulae M(4-bpy)L2·1.5H2O (M(II)=Mn, Co), Ni(4-bpy)2L2 and Cu(4-bpy) L2·H2O (where: 4-bpy=4,4'-bipyridine, L=CC L2HCOO-) have been isolated in pure state. The complexes have been characterized by elemental analysis, ir spectroscopy, conductivity (in methanol, dimethylformamide and dimethylsulfoxide solutions) and magnetic and x-ray diffraction measurements. The Mn(II) and Co(II) complexes are isostructural. The way of metal-ligand coordinations discussed. the ir spectra suggest that the carboxylate groups are bonded with metal(II) in the same way (Ni, Cu) or in different way (Mn, Co). The solubility in water is in the order of 19.40·10-3÷1.88·10-3ł mol dm-3ł. During heating the hydrate complexes lose all water in one step. The anhydrous complexes decompose to oxides via several intermediate compounds. A coupled TG-MS system was used to analyse the principal volatile products of obtained complexes. The principal volatile products of thermal decomposition of complexes in air are: H2O2 +, CO2 +, HCl+, Cl2 +, NO+ and other. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Nickel(II) and cobalt(II) complexes with the commercial herbicides 2,4-dichlorophenoxyacetic acid (2,4D; C8H6O3Cl2) and 2-(2,4-dichlorophenoxy)-propionic acid (2,4DP; C9H8O3Cl2) were prepared and characterized. On the basis of the results of elemental analysis and Ni and Co determination, the following molecular formulae were proposed for the obtained compounds: Ni(C8H5O3Cl2)2·6H2O, Co(C8H5O3Cl2)2·6H2O, Ni(C9H7O3Cl2)2·2H2O and Co(C9H7O3Cl2)2·2H2O. X-ray powder analysis was carried out. The IR, electronic (VIS) spectra and conductivity data were discussed. Water solubility of the synthesized complexes at room temperature was examined. Thermal decomposition of the compounds was studied. Dehydration processes occur during heating in air. The anhydrous compounds decompose via different intermediate products to oxides. TG/MS studies indicate formation of gaseous mass fragments of decomposition including H2O+, OH+, CO2 +, HCl+, Cl2 +, CH3Cl+, CH2O+, C6H6 + and other. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Reaction of pyridine-2,4,6-tricarboxylic acid (ptcH3) with Co(NO3)2.6H2O in presence of 4,4′-bipyridine (4,4′-bpy) in water at room temperature results in the formation of [Co2(ptcH)2(4,4′-bpy) (H2O)4]·2H2O, (1). The solid-state structure reveals that the compound is a dimeric Co(II) complex assembled to a 3D architecture via an intricate intra- and inter-molecular hydrogen-bonding interactions involving water molecules and carboxylate oxygens of the ligand ptcH2-. Crystal data: monoclinic, spacegroup P2 1/c, a = 11·441(5) ?,b = 20·212(2) ?,c = 7·020(5) ?, Β = 103·77(5)°,V= 1576-7(1) ?3,Z = 2,R1 = 00363,wR2 = 0·0856,S = 1·000.  相似文献   

7.
Summary Stoichiometric stability constants of Cu(II), Ni(II), Zn(II), Co(II), UO2(II) and Th(VI) phthalate have been determined by paper electrophoresis. Phthalic acid (0.005 mol dm−3) was added to the background electrolyte: 0.1 mol dm−3 HClO4. The proportions of C6H5C2O 4 and C6H4C2O 4 = were varied by changing the pH of the electrolyte. These anions yielded the complexes, Cu C6H5C2O 4 + , Cu C6H4C2O4, Zn C6H5C2O 4 + , Co C6H5C2O 4 + , Ni C6H5C2O 4 + , UO2 C6H5C2O 4 + , UO2 (C6H4C2O4) 2 = and Th (C6H4C2O4)2 whose stability constants are found to be 103.0, 104.7, 102.6, 102.5, 102.3, 103.5, 1012.6 and 1013.4 respectively (μ=0.1, temp 40°C).  相似文献   

8.
Spectroscopic (IR), thermoanalytical (TG/DTG, DTA) and biological methods were applied to investigate physicochemical and biological properties of seven zinc(II) complex compounds of the following formula Zn(HCOO)2·2H2O (I), Zn(HCOO)2·tph (II), Zn(CH3COO)2·2H2O (III), Zn(CH3COO)2·tph (IV), Zn(CH3COO)2·2phen (V), Zn(CH3CH2COO)2·2H2O (VI), Zn(CH3CH2CH2COO)2·2H2O (VII), where tph=theophylline, phen=phenazone. The formation of various intermediates during thermal decomposition suggests the dependence on the length of aliphatic carboxylic chain and type of N-donor ligand (tph, phen). The final product of the thermal decomposition was ZnO. The antimicrobial activity of these complexes were tested against G+ and G bacteria. Strong inhibitive effect was observed towards E. coli, salmonellae and Staph. aureus.  相似文献   

9.
Complexes of the general formulae Mn(2-bpy)2(CCl3COO)2, Co(2-bpy)2(CCl3COO)2·H2O and Ni(2-bpy)2(CCl3COO)2·2H2O (where: 2-bpy=2,2'-bipyridine) have been prepared and characterized by VIS and IR spectroscopy, conductivity and magnetic measurements. The thermal properties of complexes in the solid state were studied under non-isothermal conditions in air atmosphere. During heating the complexes decompose via different intermediate products to the oxides Mn3O4, CoO and NiO. A coupled TG-MS system was used to detection the principal volatile products of thermal decomposition and fragmentation processes of obtained compounds. The principal volatile products of thermal decomposition of complexes are: H2O+, CO2 +, Cl2 + and other. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
A new organic-inorganic hybrid polyoxometalate based on Dawson-like polyoxotungstate anion [SbW18O60]9-, formulated [Co(2,2'-bpy)3]2[Co(2,2'-bpy)2Cl][Co(2,2'-bpy)2]H2[SbW18O60]·4H2O (2,2'-bpy= 2,2(-bipyridine) has been synthesized from Sb2O3, Na2WO4, CoCl2, and 2,2'-bipyridine materials by hydrothermal method, and which was characterized by elemental analyses, IR, XPS, EPR, TG, and X-ray single crystal diffraction. Structure analysis shows that the polyoxoanion self-assembled under hydrothermal conditions consists of a Dawson-like polyoxotungstate cluster anion [SbW18O60]9- encapsulating a pyramidal {SbO3} group within the {W18} cluster cage. EPR spectra show that the high-spin octahedral CoⅡ and low-spin CoⅡ ions coexist in the title compound. Magnetic properties indicate that the compound is antiferromagnetic.  相似文献   

11.
Using 4-methylbenzenethiolates of Zn or Cd as precursors and 4,4′-bipyridine (4,4′-bpy) as bridges, we have synthesized three new Zn(II)/Cd(II) coordination polymers, {[Cd(4,4′-bpy)2(NCS)2] · 2(SC6H4CH3-4)2} n (1), {[Zn(4,4′-bpy)(SC6H4CH3-4)2] · DMF} n (2) and {[Zn(4,4′-bpy)(SC6H4CH3-4)2] · H2O · 0.5CH3OH} n (3). Compound 1 is a 2-D sheet-like square polymer in which four 4,4′-bpy ligands and two isothiocyanate ligands complete the octahedral Cd(II) coordination sphere. Compounds 2 and 3 have similar coordination around Zn(II), but have different polymer structures. In 2, Zn(II) centers are linked via a bidentate 4,4′-bipyridine to form 1-D twisted arched chains, which is a new structural type for Zn(II). Compound 3 has 1-D zigzag chains. The 2-D sheets in 1 and 1-D chains in 2 and 3 are assembled via intermolecular C–H ··· π and C–H ··· S interactions into 3-D supramolecular networks. C–H ··· S interactions are a vital factor in constructing the sulfur-containing coordination polymers. Different coordination modes and packing schemes in 13 show that the guest molecule has a critical influence on formation of polymers.  相似文献   

12.
Four novel organic–inorganic hybrid compounds [Cu5 I(4,4′-bpy)3(2,2′-bpy)4][BW12O40] · H2O (1), [Ni0.5(2,2′-bpy)1.25][Ni(2,2′-bpy)3][Ni(2,2′-bpy)2(H2O)(SiW11VIWVO40)] · 0.5H2O (2), [H2bpy]2[Zn(2,2′-bpy)3]2[Si2W18O62] · 1.5H2O (3) and [CuII(2,2′-bpy)2]2[SiW12O40] · 2H2O (4) (2,2′-bpy = 2,2′-bipyridine, 4,4′-bpy = 4,4′-bipyridine) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, thermal gravimetric analysis, electrochemical measurements and single-crystal X-ray diffraction. Compound (1) is a novel [BW12O40]5− polyoxoanion bisupported by copper(I) coordination cations with mixed 2,2′-bpy and 4,4′-bpy ligands. Compound (2) is constructed from the [SiW11VIWVO40]5− polyoxoanions supported by [Ni(2,2′–bpy)2]2+. Compound (3) is composed of a novel [Si2W18O62]8− cluster and [Zn(2,2′–bpy)3]2+ complexes, which held together into a three-dimensional (3D) supramolecular network through hydrogen-bonding interactions. Compound (4) shows a 2D layer framework constructed from a bisupporting Keggin polyoxoanion cluster and [Cu(2,2′–bpy)2]2+ coordination polymer fragments, resulting in 3D networks via supramolecular interactions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Abstract  Two organic–inorganic hybrid compounds based on the Anderson-type clusters [TeMo6O24]6−, [(H2O)2Co(TeMo6O24)][(C10N2H10)2] · 9.5H2O (1), [(C10N2H9)Ni(H2O)3]2[TeMo6O24] · 8.5H2O (2), have been synthesized by hydrothermal reactions and characterized by elemental analyses, IR spectra, thermal stability analyses, and single-crystal X-ray diffraction. Compound 1 displays a 1D chain structure constructed from alternating [TeMo6O24]6−clusters and Co2+ along the a axis with two pendant ligands 4,4′-bpy (4,4′-bipyridine). Compound 2 is composed of [TeMo6O24]6− clusters coordinated by [Ni(bpy)(H2O)3]2+ moieties, and a supramolecular architecture is further formed through extensive hydrogen bonds interactions. Graphical Abstract  Two organic–inorganic hybrid compounds based on the Anderson-type clusters [TeMo6O24]6−and the unit [M(4,4′-bpy)] have been synthesized under the hydrothermal conditions. Compound 1 displays a 1D chain structure constructed covalently from alternating polyoxoanions [TeMo6O24]6− and Co2+ along the a axis with two pendant ligands 4,4′-bipyridine. Compound 2 is composed of [TeMo6O24]6− polyoxoanion coordinated by [Ni(bpy)(H2O)3]2+ moieties and shows a 1D chain structure through the hydrogen bonds interactions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Two lactates and four new mixed ligand complexes with formulae Co(lact)2·2H2O, Ni(lact)2·3H2O, Co(4-bpy)(lact)2, Co(2,4'-bpy)2(lact)2, Ni(4-bpy)(lact)2·2H2O and Ni(2,4'-bpy)2(lact)2 (where 4-bpy=4,4'-bipyridine, 2,4'-bpy=2,4'-bipyridine, lact=CH3CH(OH)COO-) were isolated and investigated. The thermal behaviour of compounds was studied by thermal analysis (TG, DTG, DTA). In the case of hydrated complexes thermal decomposition starts with the release of water molecules. The compounds decompose at high temperature to metal(II) oxides in air. A coupled TG-MS system was used to analyse the principal volatile products of thermolysis and fragmentation processes of obtained complexes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Reactions of a freshly prepared Zn(OH)2‐2x(CO3)x · yH2O precipitate, phenanthroline with azelaic and sebacic acid in CH3OH/H2O afforded [Zn(phen)(C9H15O4)2] ( 1 ) and [Zn2(phen)2(H2O)2(C10H16O4)2] · 3H2O ( 2 ), respectively. They were structurally characterized by X‐ray diffraction methods. Compound 1 consists of complex molecules [Zn(phen)(C9H15O4)2] in which the Zn atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different monodentate hydrogen azelaato groups. Intermolecular C(alkyl)‐H···π interactions and the intermolecular C(aryl)‐H···O and O‐H···O hydrogen bonds are responsible for the supramolecular assembly of the [Zn(phen)(C9H15O4)2] complexes. Compound 2 is built up from crystal H2O molecules and the centrosymmetric binuclear [Zn2(phen)2(H2O)2(C10H16O4)2] complex, in which two [Zn(phen)(H2O)]2+ moieties are bridged by two sebacato ligands. Through the intermolecular C(alkyl)‐H···O hydrogen bonds and π‐π stacking interactions, the binuclear complex molecules are assembled into layers, between which the lattice H2O molecules are sandwiched. Crystal data: ( 1 ) C2/c (no. 15), a = 13.887(2), b = 9.790(2), c = 22.887(3)Å, β = 107.05(1)°, U = 2974.8(8)Å3, Z = 4; ( 2 ) P1¯ (no. 2), a = 8.414(1), b = 10.679(1), c = 14.076(2)Å, α = 106.52(1)°, β = 91.56(1)°, γ = 99.09(1)°, U = 1193.9(2)Å3, Z = 1.  相似文献   

16.
The new mixed ligand complexes with formulae M(4-bpy)(C2H5COO)2·2H2O (where M(II)=Mn, Co, Ni; 4,4'-bpy or 4-bpy=4,4'-bipyridine) and Cu(4-bpy)0.5(C2H5COO)2·H2O were prepared and characterized by VIS (for solid compounds of Co(II), Ni(II), Cu(II) in Nujol), IR spectroscopy, X-ray powder diffraction and molar conductance in MeOH, DMF or DMSO. Thermal behaviour of complexes was studied under static conditions in air atmosphere. Corresponding metal oxides were identified as final products of pyrolysis. A coupled TG-MS system was used to analysis of principal volatile thermal decomposition and fragmentation products of isolated complexes under dynamic air and argon atmosphere. The principal species correspond to: C+, OH+, H2O+, NO+, CO2 + and other; additionally CO+ in argon atmosphere. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The mixed 2,4'-bipyridine-oxalato complexes of the formulae M(2,4'-bipy)2 C2 O4 2H2 O (M (II)=Mn, Co, Ni, Cu; 2,4'-bipyridine=2,4'-bipy or L ; C2 O2– 4 =ox) have been prepared and characterized. IR data show that the 2,4'-bipy coordinated with these metals(II) via the least hindered (4')N atom; that oxalate group acts as bidentate chelating ligand. Room temperature magnetic moments are normal for the orbital singlet states. The thermal decomposition of these complexes was investigated by TG, DTA and DTG in air. The endothermic or exothermic character of the decomposition of ML2 (ox)2H2 O was discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The complexes of 4-chloro-2-methoxybenzoic acid anion with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were obtained as polycrystalline solids with general formula M(C8H6ClO3)2·nH2O and colours typical for M(II) ions (Mn – slightly pink, Co – pink, Ni – slightly green, Cu – turquoise and Zn – white). The results of elemental, thermal and spectral analyses suggest that compounds of Mn(II), Cu(II) and Zn(II) are tetrahydrates whereas those of Co(II) and Ni(II) are pentahydrates. The carboxylate groups in these complexes are monodentate. The hydrates of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) heated in air to 1273 K are dehydrated in one step in the range of 323–411 K and form anhydrous salts which next in the range of 433–1212 K are decomposed to the following oxides: Mn3O4, CoO, NiO and ZnO. The final products of decomposition of Cu(II) complex are CuO and Cu. The solubility value in water at 293 K for all complexes is in the order of 10–3 mol dm–3. The plots of χM vs. temperature of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) follow the Curie–Weiss law. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in these complexes were determined in the range of 76−303 K and they change from: 5.88–6.04 μB for Mn(C8H6ClO3)2·4H2O, 3.96–4.75 μB for Co(C8H6ClO3)2·5H2O, 2.32–3.02 μB for Ni(C8H6ClO3)2·5H2O and 1.77–1.94 μB for Cu(C8H6ClO3)2·4H2O.  相似文献   

19.
Three novel heteropolytungstates, [Cu(phen)2]4[α-SiW12O40] (1), [Cu4(4,4′-bpy)3(2,2′-bpy)4][α-SiW12O40] · H2O (2) and [Cu(4,4′-bpy)(4,4′-Hbpy)0.5]2[PW12O40] (3) (phen = 1,10-phenanthroline, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine), have been synthesized and characterized by elemental analyses, IR, TG analyses and single-crystal X-ray diffraction. Compound (1) exhibits interesting chiral layer constructed from interperpendicular helical chains running along a crystallographic 21 axis in the c and a directions. Furthermore, the chiral layers are connected by the [α-SiW12O40]4− anions via hydrogen bonding interactions to form a 3D superamolecular structure. The [Cu4(4,4′-bpy)3(2,2′-bpy)4]4+ coordinated complexes in compound (2) are packed together via the aromatic π–π stacking interactions and exhibit an interesting 3D sandglasslike “host” network with 1D channels, in which [α-SiW12O40]4− anions “guests” reside. Compound (3) has a unique 2D superamolecular network, which is composed of cationic CuI coordination polymer chains and discrete [PW12O40]3− polyoxoanions as linkers. It is noteworthy that the monprotonated 4,4′-bpy ligands of (3) act as arms and connect the adjacent 2D network, generating a 3D interpenetrating superamolecular structure.  相似文献   

20.
Two new polyoxometalate-based compounds, [{PVMo 5 VI Mo 3 V V 4 V V 2 IV O42}{CoII(H2O)(2,2′-bpy)2}2][CoII(2,2′-bpy)3]2{PVMo 7 VI MoVV 6 V O42} · 6H2O (2,2′-bpy = 2,2′-bipyridine) (1) and [{PVMo 6 VI Mo 2 V V 3 V V 3 IV O42}{CuII(2,2′-bpy)}{CuII(2,2′-bpy)2}2] · 3.5H2O (2), were hydrothermally prepared and structurally characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. The structural determination result shows that compound (1) contains two types of polyoxoanions coexisting with transition metal complex counter-cations in a single phase. In the structure of compound (2), a chain-like structure forms by means of the interconnection of the disordered transition metal-complex fragments decorated on the trisupporting polyoxoanions. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号