首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reversible red and far-red light-induced transitions of cyanobacterial phytochrome Cph1 from Synechocystis PCC 6803 were investigated by Fourier transform infrared (FTIR) difference spectroscopy. High-quality light-induced Pfr-Pr difference FTIR spectra were recorded for the 58 kDa N-terminal domain of Cph1 by repetitive photochemical cycling and signal averaging. The Pfr-Pr difference spectra in H(2)O and D(2)O were very similar to those previously reported for full-length 85 kDa Cph1.(1) Published assignments were extended by analysis of the effects of (13)C and (15)N isotope substitutions at selected sites in the phycocyanobilin chromophore and by (15)N global labeling of the protein. The Pfr-Pr difference spectra were dominated by an amide I peak/trough at 1653 cm(-1)(+)/1631 cm(-1)(-) and a smaller amide II band at 1554 cm(-1). Labeling effects allowed specific chromophore assignments for the C(1)=O (1736 cm(-1)(-)/1724 cm(-1)(+)) and C(19)=O (1704 cm(-1)(-)) carbonyl vibrations, C=C vibrations at 1589 cm(-1)(+), and bands at 1537(-), 1512(+), 1491(-), 1163(+), 1151(-), 1134(+), 1109(-), and 1072(-) cm(-1) that must involve chromophore C-N bonds. A variety of additional changes were insensitive to isotope labeling of the chromophore. Effects of (15)N labeling of the protein were used to tentatively assign some of these to specific amino acid changes. Those insensitive to (15)N labeling included a protonated aspartic or glutamic acid at 1734 cm(-1)(-)/1722 cm(-1)(+) and a cysteine at 2575 cm(-1)(+)/2557 cm(-1)(-). Bands sensitive to (15)N protein labeling at 1487 cm(-1)(+)/1502 cm(-1)(-) might arise from trytophan and bands at 1261 cm(-1)(+)/1244 cm(-1)(-) and 1107 cm(-1)(-)/1095 cm(-1)(+) might arise from a histidine environment or protonation change. These assignments are discussed in light of the 15Z-E photoisomerization model of phototransformation and the associated protein conformational changes.  相似文献   

2.
The infrared absorption spectrum of ammonia borane vapor has been recorded between 3600 and 600 cm(-1). Of the eleven infrared active fundamental vibrational modes, seven modes of NH(3)(11)BH(3) and four modes of NH(3)(10)BH(3) were observed. The spectra were recorded with sufficient resolution to observe the rotational structure of the bands, which allowed for preliminary least-squares fitting of the band origins and rotational constants. First-principles electronic structure calculations were performed to obtain anharmonic band origins and their intensities. The band assignments are discussed in relation to other spectroscopic techniques that have been previously used to study this molecule. A semi-empirical estimate of the vapor pressure of ammonia borane at room temperature (22 °C) was made and found to be ~1 × 10(-4) Torr. The assignment of the measured modes was aided by the calculated anharmonic frequencies and their infrared intensities. The combination of the CCSD(T) harmonic frequencies with the B3LYP anharmonicities, obtained from second-order vibrational perturbation theory, was found to produce an overall best agreement with the measured band origins.  相似文献   

3.
The vibrational spectra of vanadium oxide anions ranging from V(2)O(6)(-) to V(8)O(20)(-) are studied in the region from 555 to 1670 cm(-1) by infrared multiple photon photodissociation (IRMPD) spectroscopy. The cluster structures are assigned and structural trends identified by comparison of the experimental IRMPD spectra with simulated linear IR absorption spectra derived from density functional calculations, aided by energy calculations at higher levels of theory. Overall, the IR absorption of the V(m)O(n)(-) clusters can be grouped in three spectral regions. The transitions of (i) superoxo, (ii) vanadyl and (iii) V-O-V and V-O single bond modes are found at approximately 1100 cm(-1), 1020 to 870 cm(-1), and 950 to 580 cm(-1), respectively. A structural transition from open structures, including at least one vanadium atom forming two vanadyl bonds, to caged structures, with only one vanadyl bond per vanadium atom, is observed in-between tri- and tetravanadium oxide anions. Both the closed shell (V(2)O(5))(2,3)VO(3)(-) and open shell (V(2)O(5))(2-4)(-) anions prefer cage-like structures. The (V(2)O(5))(3,4)(-) anions have symmetry-broken minimum energy structures (C(s)) connected by low-energy transition structures of C(2v) symmetry. These double well potentials for V-O-V modes lead to IR transitions substantially red-shifted from their harmonic values. For the oxygen rich clusters, the IRMPD spectra prove the presence of a superoxo group in V(2)O(7)(-), but the absence of the expected peroxo group in V(4)O(11)(-). For V(4)O(11)(-), use of a genetic algorithm was necessary for finding a non-intuitive energy minimum structure with sufficient agreement between experiment and theory.  相似文献   

4.
Born-Oppenheimer equilibrium structures, r(e)(BO), of the electronic ground state of the borazane (BH3NH3) molecule of C3v point-group symmetry are computed ab initio using the CCSD(T) method with basis sets up to quintuple-zeta quality. Inclusion of the counterpoise correction and extrapolation of the structural parameters to the complete basis set limit yield a best estimate of r(e)(BO) of BH3NH3. The anharmonic force field of BH3NH3, computed at the CCSD(T) level of theory with a basis set of triple-zeta quality, allows the determination of semi-experimental equilibrium rotational constants, which in turn result in a semi-experimental equilibrium structure, r(e)(SE). The r(e)(BO) and r(e)(SE) structures are in excellent agreement, indicating the validity of the methods used for their determination. The empirical mass-dependent structure, r(m)(1), of BH3NH3 is also determined. Although it is inferior in quality to the previous two structures, it is much more accurate than the standard empirical r0 and r(s) structures reported earlier for BH3NH3. The semi-experimental r(e)(SE) as well as the empirical r(m)(1) structures determined are based on experimental ground-state rotational constants available from the literature for nine isotopologues of borazane. The effective barrier to the internal rotation of BH3NH3, a molecule isoelectronic with CH3CH3, has been computed ab initio, employing the focal-point analysis (FPA) approach, to be 699 +/- 11 cm(-1). This compares favorably with an empirical redetermination of the effective barrier based on the above r(e)(SE) structure, V3 = 718(17) cm(-1).  相似文献   

5.
6.
Both experimental and theoretical infrared investigations of cyclopentadienylphosphine (CpP) are reported. The infrared spectra (3500-500 cm(-1)) in the gas phase have been recorded at 0.5 cm(-1) resolution. Infrared absorptions bands of the two lowest stable conformers were observed and assigned. Average integrated intensities of isolated and overlapping vibrational bands were also determined experimentally. The vibrational frequencies of the CpP system and its P-dideuterated isotopologue have been calculated by means of density functional theory. The Becke exchange functional and Lee-Yang-Parr correlation functional method with a combination of the two basis sets, namely 6-31+G(d,p) and the correlation-consistent triple-zeta cc-pVTZ set of Dunning, were used. Hybrid B3LYP/B3LYP//cc-pVTZ/6-31+G(d,p) anharmonic frequencies of the fundamental, overtone, and combination transitions were calculated in the 3500-200 cm(-1) area with the use of a variational approach, implemented in the P_Anhar_v1.1 code, to assign the experimental data for each conformer.  相似文献   

7.
We describe a simple way of obtaining numerically the manifold of energies for ro-vibrational transitions for a centrifugally distorted oscillator, starting from the potential energy of the non-rotating oscillator calculated by an accurate ab initio method. It is shown that the energies so obtained compare well with those obtained variationally. The species of astrophysical interest methylidyne ion, CH(+), has been selected as an example that allow us to show the computational efficiency of the method with respect to the variational one. It is applied for the determination of ro-vibrational levels up J=6, and the spectroscopic parameters corresponding to the ground electronic state X(1)Sigma(+). From the potential energy surface computed at the MRCI/cc-pV5Z level, the fundamental frequency, B(0) and D(0) are determined to be 2724.8, 13.85688 and -1.53322x10(-3)cm(-1), respectively. We provide also an estimation of anharmonic constants.  相似文献   

8.
A new borohydride, [CH(3)NH(3)](+)[BH(4)](-), has been synthesized through the metathesis of CH(3)NH(3)F and NaBH(4) in methylamine. Room-temperature X-ray diffraction studies have shown that [CH(3)NH(3)](+)[BH(4)](-) adopts a tetragonal unit cell with considerable hydrogen mobility similar to that observed in NH(3)BH(3). The kinetics and thermodynamics of hydrogen release have been investigated and were found to follow a similar pathway to that of [NH(4)](+)[BH(4)](-). Decomposition of [CH(3)NH(3)](+)[BH(4)](-) occurred slowly at room temperature and rapidly at ca. 40 °C to form [BH(2)(CH(3)NH(2))(2)](+)[BH(4)](-), the methylated analogue of the diammoniate of diborane. The decomposition has been investigated by means of in situ X-ray diffraction and solid state (11)B NMR spectroscopy and occurred in the absence of any detectable intermediates to form crystalline [BH(2)(CH(3)NH(2))(2)](+)[BH(4)](-). [(CH(3))(2)NH(2)](+)[BH(4)](-) and [BH(2){(CH(3))(2)NH}(2)](+)[BH(4)](-) have also been synthesized through analogous routes, indicating a more general applicability of the synthetic method.  相似文献   

9.
Electrolyte ions differ in size leading to the possibility that the distance of closest approach to a charged surface differs for different ions. So far, ions bound as outersphere complexes have been treated as point charges present at one or two electrostatic plane(s). However, in a multicomponent system, each electrolyte ion may have its own distance of approach and corresponding electrostatic plane with an ion-specific capacitance. It is preferable to make the capacitance of the compact part of the double layer a general characteristic of the solid-solution interface. A new surface structural approach is presented that may account for variation in size of electrolyte ions. In this approach, the location of the charge of the outersphere surface complexes is described using the concept of charge distribution in which the ion charge is allowed to be distributed over two electrostatic planes. It was shown that the concept can successfully describe the pH dependent proton binding and the shift in the isoelectric point (IEP) in the presence of variety of monovalent electrolyte ions, including Li(+), Na(+), K(+), Cs(+), Cl(-), NO(-)(3), and ClO(-)(4) with a common set of parameters. The new concept also sheds more light on the degree of hydration of the ions when present as outersphere complexes. Interpretation of the charge distribution values obtained shows that Cl(-) ions are located relatively close to the surface. The large alkali ions K(+), Cs(+), and Rb(+) are at the largest distance. Li(+), Na(+), NO(-)(3), and ClO(-)(4) are present at intermediate positions.  相似文献   

10.
The optical absorption, emission, FT Raman, one-photon excitation, two-photon excitation, and luminescence lifetime measurements are reported for UO(2)Cl(4)(2)(-) in 40:60 AlCl(3)-EMIC (where EMIC identical with 1-ethyl-3-methylimidazolium chloride), a room-temperature ionic liquid. Comparison of the spectra with previous results from single crystals containing UO(2)Cl(4)(2)(-) allowed the characterization of four ground-state vibrational frequencies, two excited-state vibrational frequencies, and the location of eight electronic excited-state energy levels. The vibrational frequencies and electronic energy levels are found to be consistent with the UO(2)Cl(4)(2)(-) ion. Comparison of the one-photon and two-photon excitation spectra, and the relative intensities of the transitions in the emission spectrum indicate that the center of symmetry is perturbed by an interaction with the solvent.  相似文献   

11.
The Cuban chromites with a spinel structure, FeCr2O4 have been studied using optical absorption and EPR spectroscopy. The spectral features in the electronic spectra are used to map the octahedral and tetrahedral co-ordinated cations. Bands due Cr3+ and Fe3+ ions could be distinguished from UV-vis spectrum. Chromite spectrum shows two spin allowed bands at 17,390 and 23,810 cm(-1) due to Cr3+ in octahedral field and they are assigned to 4A2g(F) --> 4T2g(F) and 4A2g(F) --> 4T1g(F) transitions. This is in conformity with the broad resonance of Cr3+ observed from EPR spectrum at g = 1.903 and a weak signal at g = 3.861 confirms Fe3+ impurity in the mineral. Bands of Fe3+ ion in the optical spectrum at 13,700, 18,870 and 28,570 cm(-1) are attributed to 6A1g(S) --> 4T1g(G), 6A1g(S) --> 4T2g(G) and 6A1g(S) --> 4T2g(P) transitions, respectively. Near-IR reflectance spectroscopy has been used effectively to show intense absorption bands caused by electronic spin allowed d-d transitions of Fe2+ in tetrahedral symmetry, in the region 5000-4000 cm(-1). The high frequency region (7500-6500 cm(-1)) is attributed to the overtones of hydroxyl stretching modes. Correlation between Raman spectral features and mineral chemistry are used to interpret the Raman data. The Raman spectrum of chromite shows three bands in the CrO stretching region at 730, 560 and 445 cm(-1). The most intense peak at 730 cm(-1) is identified as symmetric stretching vibrational mode, A1g(nu1) and the other two minor peaks at 560 and 445 cm(-1) are assigned to F2g(nu4) and E(g)(nu2) modes, respectively. Cation substitution in chromite results various changes both in Raman and IR spectra. In the low-wavenumber region of Raman spectrum a significant band at 250 cm(-1) with a component at 218 cm(-1) is attributed F2g(nu3) mode. The minor peaks at 195, 175, 160 cm(-1) might be due to E(g) and F2g symmetries. Broadening of the peak of A1g mode and shifting of the peak to higher wavenumber observed as a result of increasing the proportion of Al3+O6. The presence of water in the mineral shows bands in the IR spectrum at 3550, 3425, 3295, 1630 and 1455 cm(-1). The vibrational spectrum of chromite gives raise to four frequencies at 985, 770, 710 and 650 cm(-1). The first two frequencies nu1 and nu2 are related to the lattice vibrations of octahedral groups. Due to the influence of tetrahedral bivalent cation, vibrational interactions occur between nu3 and nu4 and hence the low frequency bands, nu3 and nu4 correspond to complex vibrations involving both octahedral and tetrahedral cations simultaneously. Cr3+ in Cuban natural chromites has highest CFSE (20,868 cm(-1)) when compared to other oxide minerals.  相似文献   

12.
The nature of anharmonic couplings in the H(5)O(2)(+) "Zundel" ion and its deuterated isotopologues is investigated through comparison of their measured and calculated vibrational spectra. This follows a recent study in which we reported spectra for H(5)O(2)(+), D(5)O(2)(+), and D(4)HO(2)(+) from ~600 to 4000 cm(-1), as well as H(4)DO(2)(+) in the OH and OD stretching regions [ J. Phys. Chem. B 2008 , 112 , 321 ]. While the assignments of the higher-energy transitions associated with the fundamentals of the exterior OH and OD motions are relatively straightforward, difficulties arise in the assignment of the lower-frequency regions that involve displacement of the bridging proton, especially for the isotopically mixed species. Here we revisit the Ar-tagged isotopomers, and report the low energy action spectrum of H(4)DO(2)(+) for the first time, as well as present significantly improved spectra for the D(4)HO(2)(+) and D(5)O(2)(+) systems. Band assignments are clarified in several cases using IR-IR hole-burning. We then investigate the physical origin of the anharmonic effects encoded in these spectra using a recently developed technique in which the anharmonic frequencies and intensities of transitions (involving up to two quanta of excitation) are evaluated using the ground state probability amplitudes [ J. Phys. Chem. A 2009 , 113 , 7346 ] obtained from diffusion Monte Carlo simulations. This approach has the advantage that it is applicable to low-symmetry systems [such as (HDO)H(+)(OH(2))] that are not readily addressed using highly accurate methods such as the multiconfigurational time-dependent Hartree (MCTDH) approach. Moreover, it naturally accommodates an intuitive evaluation of the types of motion that contribute oscillator strength in the various regions of the spectrum, even when the wave function is intrinsically not separable as a product of low-dimensional approximate solutions. Spectra for H(5)O(2)(+), D(5)O(2)(+), H(4)DO(2)(+), and D(4)HO(2)(+) that are calculated by this approach are shown to be in excellent agreement with the measured spectra for these species, leading to reassignments of two of the bands in the intramolecular bending region of D(4)HO(2)(+).  相似文献   

13.
The IR spectra and normal-mode analysis of the adamantane-like compound [Mn(4)O(6)(bpea)(4)](n+) (bpea = N,N-bis(2-pyridylmethyl)ethylamine) in two oxidation states, Mn(IV)(4) and Mn(III)Mn(IV)(3), that are relevant to the oxygen-evolving complex of photosystem II are presented. Mn-O vibrational modes are identified with isotopic exchange, (16)O-->(18)O, of the mono-micro-oxo bridging atoms in the complex. IR spectra of the Mn(III)Mn(IV)(3) species are obtained by electrochemical reduction of the Mn(IV)(4) species using a spectroelectrochemical cell, based on attenuated total reflection [Visser, H.; et al. Anal. Chem. 2001, 73, 4374-4378]. A novel method of subtraction is used to reduce background contributions from solvent and ligand modes, and the difference and double-difference spectra are used in identifying Mn-O bridging modes that are sensitive to oxidation state change. Two strong IR bands are observed for the Mn(IV)(4) species at 745 and 707 cm(-1), and a weaker band is observed at 510 cm(-1). Upon reduction, the Mn(III)Mn(IV)(3) species exhibits two strong IR bands at 745 and 680 cm(-1), and several weaker bands are observed in the 510-425 cm(-1) range. A normal-mode analysis is performed to assign all the relevant bridging modes in the oxidized Mn(IV)(4) and reduced Mn(III)Mn(IV)(3) species. The calculated force constants for the Mn(IV)(4) species are f(r)(IV)= 3.15 mdyn/A, f(rOr) = 0.55 mdyn/A, and f(rMnr) = 0.20 mdyn/A. The force constants for the Mn(III)Mn(IV)(3) species are f(r)(IV)= 3.10 mdyn/A, f(r)(III)= 2.45 mdyn/A, f(rOr) = 0.40 mdyn/A, and f(rMnr) = 0.15 mdyn/A. This study provides insights for the identification of Mn-O modes in the IR spectra of the photosynthetic oxygen-evolving complex during its catalytic cycle.  相似文献   

14.
The novel organometallic aqua complex [(CO)(3)Mn(H(2)O)(3)](+) (1(+)) was obtained through hydrolysis of the analogous acetone complex. IR [nu(CO) = 2051, 1944 cm(-)(1)] and (17)O NMR spectroscopy revealed the presence of a fac tricarbonyl unit. Potentiometric titrations established that the trimer [(CO)(3)Mn(3)(OH)(4)](-) was the principal condensation product in the pH range >6 prior to slow formation of the tetramer [[(CO)(3)Mn](OH)](4). Water exchange in 1(+), determined by NMR line broadening as k(ex) = 19 +/- 4 s(-)(1) at 298 K, is four orders faster than with the analogous Re complex. The activation volume DeltaV(++) = -4.5 +/- 0.4 cm(3) mol(-1) is indicative of an associatively activated (I(a)) process.  相似文献   

15.
Using coupled-cluster approach full six-dimensional analytic potential energy surfaces for two cyclic SiC(3) isomers [C-C transannular bond (I) and Si-C transannular bond (II)] have been generated and used to calculate anharmonic vibrational wave functions. Several strong low-lying anharmonic resonances have been found. In both isomers already some of the fundamental transitions cannot be described within the harmonic approximation. Adiabatic electron affinities and ionization energies have been calculated as well. The Franck-Condon factors for the photodetachment processes c-SiC(3) (-)(I)-->c-SiC(3)(I) and c-SiC(3) (-)(II)-->c-SiC(3)(II) are reported.  相似文献   

16.
We have found experimentally the IR-induced second harmonic generation (SHG) in glasses possessing different degrees of electron-phonon interactions. For the investigations, we have chosen As(1)(-)(x)()Bi(x)Te(3)-CaBr(2)-PbBr(2) (0 < x <1) glasses. General formalism is based on consideration of fifth-order nonlinear optical susceptibility. The effect is observed in the middle IR region (spectral range 0.92-10.5 microm) where the value of the electronic energy gap is commensurable to the energies of actual quasi-phonons participating in the anharmonic (non-centrosymmetric) electron-phonon interactions. Varying the As/Bi ratio allows us to operate by the degree of electron-phonon anharmonicity in a wide spectral range. The second harmonic generation (SHG) output signal shows a correlation with IR-induced anharmonic phonon modes within the 1.5-4.8 microm spectral range. A maximum value of SHG is achieved at pump-probe delaying times of about 12.5-20 ps, which are typical for relaxation of the anharmonic electron-quasi-phonon subsystem. The maximally achieved value of the phonon-assisted optical susceptibility was about 6 x 10(-38) m(4)/V(4). The SHG signal was saturated for the IR pump power densities of about 1.73 GW/cm(2), corresponding to output SHG signals of about 9.8 x 10(-4) with respect to the fundamental ones. By varying the degree of electron-phonon anharmonicity and changing content of glasses, it was unambiguously shown that the IR-induced SHG signal correlates well with changes of oscillator strengths of IR-induced anharmonic phonon modes.  相似文献   

17.
We report the infrared absorption spectrum of the methylthio (or thiomethoxy) radical, CH(3)S (X (2)E(3/2)), produced via photodissociation in situ of three precursors CH(3)SH, CH(3)SCH(3), and CH(3)SSCH(3) isolated in solid p-H(2). The common absorption features observed with similar intensity ratios in each experiment are assigned to CH(3)S. The wavenumbers of these features agree satisfactorily with those predicted with a spin-vibronic Hamiltonian accounting for the anharmonic effects and the Jahn-Teller effects to the quartic term [A. V. Marenich and J. E. Boggs, J. Chem. Theory Comput. 1, 1162 (2005)]. In addition to an absorption line at 724.2?cm(-1), corresponding to a transition of 3(1) previously determined to be 727?cm(-1) from fluorescence spectra of gaseous CH(3)S, we identified fundamental transitions 6(1)(a(1)) at 771.1, 6(1)(e) at 1056.6, 5(1)(a(1)) at 1400.0, 4(1)(a(1)) at 2898.4?cm(-1), and several combination and overtone transitions. In contrast, photolysis of CH(3)SSCH(3) isolated in solid Ar produces mainly H(2)CS, CH(3)SH, and CS(2), but no CH(3)S. These results demonstrate the feasibility of using photolysis in situ of precursors isolated in solid p-H(2) to produce free radicals by taking advantage of the diminished cage effect of the matrix.  相似文献   

18.
M(+)(H(2)O)(n) and M(+)(H(2)O)(n)Ar ions (M=Cu and Ag) are studied for exploring coordination and solvation structures of noble-metal ions. These species are produced in a laser-vaporization cluster source and probed with infrared (IR) photodissociation spectroscopy in the OH-stretch region using a triple quadrupole mass spectrometer. Density functional theory calculations are also carried out for analyzing the experimental IR spectra. Partially resolved rotational structure observed in the spectrum of Ag(+)(H(2)O)(1) x Ar indicates that the complex is quasilinear in an Ar-Ag(+)-O configuration with the H atoms symmetrically displaced off axis. The spectra of the Ar-tagged M(+)(H(2)O)(2) are consistent with twofold coordination with a linear O-M(+)-O arrangement for these ions, which is stabilized by the s-d hybridization in M(+). Hydrogen bonding between H(2)O molecules is absent in Ag(+)(H(2)O)(3) x Ar but detected in Cu(+)(H(2)O)(3) x Ar through characteristic changes in the position and intensity of the OH-stretch transitions. The third H(2)O attaches directly to Ag(+) in a tricoordinated form, while it occupies a hydrogen-bonding site in the second shell of the dicoordinated Cu(+). The preference of the tricoordination is attributable to the inefficient 5s-4d hybridization in Ag(+), in contrast to the extensive 4s-3d hybridization in Cu(+) which retains the dicoordination. This is most likely because the s-d energy gap of Ag(+) is much larger than that of Cu(+). The fourth H(2)O occupies the second shells of the tricoordinated Ag(+) and the dicoordinated Cu(+), as extensive hydrogen bonding is observed in M(+)(H(2)O)(4) x Ar. Interestingly, the Ag(+)(H(2)O)(4) x Ar ions adopt not only the tricoordinated form but also the dicoordinated forms, which are absent in Ag(+)(H(2)O)(3) x Ar but revived at n=4. Size dependent variations in the spectra of Cu(+)(H(2)O)(n) for n=5-7 provide evidence for the completion of the second shell at n=6, where the dicoordinated Cu(+)(H(2)O)(2) subunit is surrounded by four H(2)O molecules. The gas-phase coordination number of Cu(+) is 2 and the resulting linearly coordinated structure acts as the core of further solvation processes.  相似文献   

19.
Absorption and luminescence excitation spectra of Xe/CF(4) mixtures were studied in the vacuum UV region at high resolution using tunable synchrotron radiation. Pressure-broadened resonance bands and bands associated with dipole-forbidden states of the Xe atom due to collision-induced breakdown of the optical selection rules are reported. The spectra display in addition numerous satellite bands corresponding to transitions to vibrationally excited states of a Xe-CF(4) collisional complex. These satellites are located at energies of Xe atom transition increased by one quantum energy in the IR active v(3) vibrational mode of CF(4) (v(3) = 1281 cm(-1)). Satellites of both resonance and dipole-forbidden transitions were observed. Satellites of low lying resonance states are spectrally broad bands closely resembling in shape their parent pressure-broadened resonance bands. In contrast, satellites of dipole-forbidden states and of high lying resonance states are spectrally narrow bands (FWHM ~10 cm(-1)). The satellites of dipole-forbidden states are orders of magnitude stronger than transitions to their parent states due to collision-induced breakdown of the optical selection rules. These satellites are attributed to a coupling of dipole-forbidden and resonance states induced by the electric field of the transient CF(4) (v(3) = 0 ? v(3) = 1) dipole. Similar satellites are present in spectra of Xe/C(2)F(6) mixtures where these bands are induced by the IR active v(10) mode of C(2)F(6). Transitions to vibrationally excited states of Xe-CF(4)(C(2)F(6)) collision pairs were also observed in two-photon LIF spectra.  相似文献   

20.
To construct two-dimensional infrared (2D IR) spectra having all vibrational modes of a molecule included is still quite challenging, both experimentally and theoretically. Here we report an ab initio-based all-mode 2D IR spectra simulation approach. Using deuterated glycolaldehyde (CH2OHCDO), the smallest sugar as a model molecule, we have calculated correlation 2D IR spectrum of its entire 3N-6 (N=8) normal modes in the mid-to-far-IR region (4000-0 cm(-1)), using quantum chemical anharmonic frequency and anharmonicity computations in conjunction with time-domain third-order nonlinear response functions. The calculated 2D IR spectra were found to contain a network of structural and dynamical parameters of the molecule. It is found that certain spectral regions, once enlarged, show features that are in reasonable agreement with limited but already available single- and dual-frequency 2D IR experimental results. The extension of narrow-band 2D IR spectroscopy into the full mid-to-far-IR regime would allow us to characterize the structural distributions and dynamics of molecular complexes in condensed phases with sufficient number of parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号