共查询到18条相似文献,搜索用时 62 毫秒
1.
阵列波导光栅设计原及优化 总被引:1,自引:0,他引:1
本文从波导光学和衍射光学理论出发,推导出阵列波导光栅(Arrayed-Waveguide Gratings)型波分复用器的重要结构参量;针对其性能参量,提出了一些优化设计方法。 相似文献
2.
3.
4.
5.
设计并制作了一款应用于IEEE 200/400GbE标准802.3bs的阵列波导光栅.该阵列波导光栅使用2.0%的超高折射率差硅基二氧化硅材料,使得芯片尺寸及损耗较小.为了获得平坦化的接收光谱,将输出波导进行展宽,采用多模波导结构,激发若干个高阶模,数个模式叠加使得原本高斯状的光谱顶部产生平坦化,形成箱形接收光谱.设计的阵列波导光栅的中心波长为1 291.10nm,通道间隔为800GHz,芯片尺寸为11mm×4mm.经过等离子增强化学气相沉积和感应耦合等离子刻蚀工艺制备了芯片,测试结果表明最小的插入损耗为-3.3dB,相邻通道间串扰小于-20dB,单通道1dB带宽在2.12~3.06nm范围,实现了良好的解复用和平坦化效果,在实际光通信系统中有一定的实用价值. 相似文献
6.
7.
8.
9.
10.
提出一种将质子交换技术和刻蚀技术结合的体铌酸锂波导和器件加工方案,基于质子交换的铌酸锂晶体相变特性改变,降低了质子交换区直接刻蚀难度,结合质子交换的纵向折射率改变和刻蚀波导的横向结构改变,波导尺寸显著降低,采用粒子群算法优化波导尺寸,最小可达2.5μm。基于该工艺方案设计了中心波长为1550 nm、四通道且通道间隔为400 GHz的阵列波导光栅,该阵列波导光栅的传输损耗约为6 dB,相邻通道间串扰均低于22 dB,整体尺寸仅为850μm×620μm,在高密度铌酸锂光子集成互连等场景具有较大的应用潜力。 相似文献
11.
The behaviour of an array of photonic crystal waveguides is numerically investigated. It is shown that high dispersion may
be achieved in the telecommunication window around 1550 nm, with a device whose dimensions are in the order of half a mm2. 相似文献
12.
单个衍射光栅周期所包含的Bragg周期层数是连续Bragg齿型凹面衍射光栅的主要参数之一,该参数可改变光栅齿结构,对凹面衍射光栅的分辨力.自由光谱范围及衍射效率有重要影响.本文通过理论分析与仿真模拟,对比了4种不同层数的Bragg型凹面衍射光栅的特性参数.研究结果表明:在衍射光栅尺寸不变的情况下,改变单个光栅周期包含的Bragg周期层数不会显著提高器件主衍射级次的分辨力;单个光栅周期包含的Bragg周期层数与光栅可衍射的级次数成正相关.单周期层数的Bragg凹面衍射光栅的主衍射级次效率最高,其可衍射的级次数最少,且其他衍射级次分散的能量最少;增加单个光栅周期所包含的Bragg周期层数会降低主衍射级次的自由光谱范围.该研究对于设计低插损、高分辨率、宽工作波段的波分复用器或光栅光谱仪具有重要的指导意义. 相似文献
13.
14.
An improved design of silicon-on-insulator based 8 × 8 AWG multiplexer is presented using tapered entry into the slab waveguide. Our simulation result clearly shows significant enhancement of electric field from 0.44 V/m to 0.732 V/m, reduction in insertion loss from 7.13 db to 2.7 db, with bandwidth of 230 GHz and channel spacing 200 GHz while keeping other parameters within acceptable limits. 相似文献
15.
An improved design of silicon-on-insulator based 8 × 8 AWG multiplexer is presented using tapered entry into the slab waveguide. Our simulation result clearly shows significant enhancement of electric field from 0.44 V/m to 0.732 V/m, reduction in insertion loss from 7.13 db to 2.7 db, with bandwidth of 230 GHz and channel spacing 200 GHz while keeping other parameters within acceptable limits. 相似文献
16.
A design for a planar etched diffraction grating (EDG) demultiplexer is presented to reduce the back reflection. By reducing the diffracted field at the input waveguide, the present design makes the best effort to reduce the optical return loss. A design example is given to verify the performance. The spectral response at the input waveguide is simulated and the results show that at the wavelengths that cause back reflection, the reduced back reflection design only receives –47.7 dB of the input power, whereas the design without reduced back reflection receives –3.7 dB of the input power. 相似文献
17.
A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings 下载免费PDF全文
Changjian Xie 《中国物理 B》2021,30(12):120703-120703
A 32-channel wavelength division multiplexer with 100 GHz spacing is designed and fabricated by interleaving two silicon arrayed waveguide gratings (AWGs). It has a parallel structure consisting of two silicon 16-channel AWGs with 200 GHz spacing and a Mach-Zehnder interferometer (MZI) with 200 GHz free spectral range. The 16 channels of one silicon AWG are interleaved with those of the other AWG in spectrum, but with an identical spacing of 200 GHz. For the composed wavelength division multiplexer, the experiment results reveal 32 wavelength channels in C-band, a wavelength spacing of 100 GHz, and a channel crosstalk lower than -15 dB. 相似文献
18.
Wang Wenhui Tang Yanzhe Wang Yunxiang Qu Hongchang Wu Yaming Li Tie Yang Jianyi Wang Yuelin Liu Ming 《Optical and Quantum Electronics》2004,36(6):559-566
An optical wavelength demultiplexer with the etched diffraction grating (EDG) on the silicon-on-insulator (SOI) material is
demonstrated. Fabricated by the wet-anisotropic-etching method, 90° turning mirrors are used to bend waveguides, and the size
of the EDG-based demultiplexer is minimized to only 16×2.5 mm2. The crosstalk is below −16 dB. The on-chip loss is about 9.97 dB, which is composed of about 8.72 dB excess loss and 1.25
dB diffraction loss. The polarization-dependent central wavelength shift is below 0.13 nm, and the polarization-dependent
loss is about 0.35 dB. The sources of the crosstalk and loss are discussed in details, and the related measures to improve
the performance are also presented. 相似文献