首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The average-case analysis of algorithms usually assumes independent, identical distributions for the inputs. In [C. Kenyon, Best-fit bin-packing with random order, in: Proc. of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 1996, pp. 359–364] Kenyon introduced the random-order ratio, a new average-case performance metric for bin packing heuristics, and gave upper and lower bounds for it for the Best Fit heuristics. We introduce an alternative definition of the random-order ratio and show that the two definitions give the same result for Next Fit. We also show that the random-order ratio of Next Fit equals to its asymptotic worst-case, i.e., it is 2.  相似文献   

2.
Here we review the main results in the area of semi-on-line bin packing. Then we present a new lower bound for the asymptotic competitive ratio of any on-line bin packing algorithm which knows the optimum value in advance.  相似文献   

3.
A natural generalization of the classical online bin packing problem is the dynamic bin packing problem introduced by Coffman et al. (1983) [7]. In this formulation, items arrive and depart and the objective is to minimize the maximal number of bins ever used over all times. We study the oriented multi-dimensional dynamic bin packing problem for two dimensions, three dimensions and multiple dimensions. Specifically, we consider dynamic packing of squares and rectangles into unit squares and dynamic packing of three-dimensional cubes and boxes into unit cubes. We also study dynamic d-dimensional hypercube and hyperbox packing. For dynamic d-dimensional box packing we define and analyze the algorithm NFDH for the offline problem and present a dynamic version. This algorithm was studied before for rectangle packing and for square packing and was generalized only for multi-dimensional cubes. We present upper and lower bounds for each of these cases.  相似文献   

4.
This paper deals with the fuzzy bin packing problem that is a packing problem of non-rigid rectangles into an open rectangular bin. This problem is different from the conventional bin packing problem, which considers only rigid rectangles. The goal of the fuzzy bin packing problem is to minimize both the height of a packing and the extra cost due to the reduction of each piece. The total cost of the problem is represented as the sum of the height cost and the extra cost due to reductions of the pieces, which is called reduction cost. Because the conventional bin packing problem itself is an NP-hard problem, the presented optimization method assumes that an initial packing for non-reduced pieces has already been found. A closed form solution is presented for fuzzy bin packing problems, in which fuzzy numbers are triangular and the reduction cost is given by a quadratic function.  相似文献   

5.
This paper studies a variant of the three-dimensional bin packing problem (3D-BPP), where the bin height can be adjusted to the cartons it packs. The bins and cartons to be packed are assumed rectangular in shape. The cartons are allowed to be rotated into any one of the six positions that keep the carton edges parallel to the bin edges. This greatly increases the difficulty of finding a good solution since the search space expands significantly comparing to the 3D-BPP where the cartons have fixed orientations. A mathematical (mixed integer programming) approach is modified based on [Chen, C. S., Lee, S. M., Shen, Q. S., 1995. An analytical model for the container loading problem. European Journal of Operational Research 80 (1), 68–76] and numerical experiments indicate that the mathematical approach is not suitable for the variable bin height 3D-BPP. A special bin packing algorithm based on packing index is designed to utilize the special problem feature and is used as a building block for a genetic algorithm designed for the 3D-BPP. The paper also investigates the situation where more than one type of bin are used and provides a heuristic for packing a batch of cartons using the genetic algorithm. Numerical experiments show that our proposed method yields quick and satisfactory results when benchmarked against the actual packing practice and the MIP model with the latest version of CPLEX.  相似文献   

6.
There appear to be two versions of the Dual Bin Packing problem in the literature. In addition, one of the versions has a counterpart in the cutting stock literature, known as the Skiving Stock Problem. This paper outlines branch-and-price algorithms for both. We introduce combinatorial upper bounds and well-performing heuristics from the literature in the branch-and-price framework. Extensive computational tests indicate that the branch-and-price approach is superior to the existing branch-and-bound procedures, based on combinatorial bounds. The tests illustrate the influence of different problem characteristics on the computation time and the limits of the branch-and-price approach.  相似文献   

7.
8.
In this paper, we examine the two-dimensional variable-sized bin packing problem (2DVSBPP), where the task is to pack all given rectangles into bins of various sizes such that the total area of the used bins is minimized. We partition the search space of the 2DVSBPP into sets and impose an order on the sets, and then use a goal-driven approach to take advantage of the special structure of this partitioned solution space. Since the 2DVSBPP is a generalization of the two-dimensional bin packing problem (2DBPP), our approach can be adapted to the 2DBPP with minimal changes. Computational experiments on the standard benchmark data for both the 2DVSBPP and 2DBPP shows that our approach is more effective than existing approaches in literature.  相似文献   

9.
The Generalized Bin Packing Problem (GBPP) is a recently introduced packing problem where, given a set of bins characterized by volume and cost and a set of items characterized by volume and profit (which also depends on bins), we want to select a subset of items to be loaded into a subset of bins which maximizes the total net profit, while satisfying the volume and bin availability constraints. The total net profit is given by the difference between the total profit of the loaded items and the total cost of the used bins. In this paper, we consider the stochastic version of the GBPP (S-GBPP), where the item profits are random variables to take into account the profit oscillations due to the handling operations for bin loading. The probability distribution of these random variables is assumed to be unknown. By using the asymptotic theory of extreme values a deterministic approximation for the S-GBPP is derived.  相似文献   

10.
In the classical bin packing problem one is given a list of items and asked to pack them into the fewest possible unit-sized bins. Given two lists, L1 and L2, where L2 is derived from L1 by deleting some elements of L1 and/or reducing the size of some elements of L1, one might hope that an approximation algorithm would use no more bins to pack L2 than it uses to pack L1. Johnson and Graham have given examples showing that First-Fit and First-Fit Decreasing can actually use more bins to pack L2 than L1. Graham has also studied this type of behavior among multiprocessor scheduling algorithms. In the present paper we extend this study of anomalous behavior to a broad class of approximation algorithms for bin packing. To do this we introduce a technique which allows one to characterize the monotonic/anomalous behavior of any algorithm in a large, natural class. We then derive upper and lower bounds on the anomalous behavior of the algorithms which are anomalous and provide conditions under which a normally nonmonotonic algorithm becomes monotonic.  相似文献   

11.
We study a new kind of online bin packing with conflicts, motivated by a problem arising when scheduling jobs on the Grid. In this bin packing problem, the set of items is given at the beginning, together with a set of conflicts on pairs of items. A conflict on a pair of items implies that they cannot be assigned to a common bin. The online scenario is realized as follows. Variable-sized bins arrive one by one, and items need to be assigned to each bin before the next bin arrives. We analyze the online problem as well as semi-online versions of it, which are the variant where the sizes of the arriving bins are monotonically non-increasing as well as the variant where they are monotonically non-decreasing.  相似文献   

12.
13.
Consider independent identically distributed random variables (Xi) valued in [0,1]. Let B(n) be the optimal (minimum) number of unit size bins needed to pack n items of size X1, X2,…,Xn. We prove that there exists a numerical constant C such that for t > 0,
Pr(∣B(n)?E(B(n))∣>tn)≤ C exp(? t).
The constant C does not depend on the distribution of X.  相似文献   

14.
The FIRST FIT DECREASING algorithm for bin packing has long been famous for its guarantee that no packing it generates will use more than 119 = 1.222… times the optimal number of bins. We present a simple modified version that has essentially the same running time, should perform at least as well on average, and yet provides a guarantee of 7160 = 1.18333….  相似文献   

15.
16.
In the classical bin packing problem, one is asked to pack items of various sizes into the minimum number of equal-sized bins. In the on-line version of this problem, the packer is given the items one by one and must immediately and irrevocably assign every item to its bin, without knowing the future items. Beginning with the first results in the early 1970's, we survey — from the worst case point of view — the approximation results obtained for on-line bin packing, higher dimensional versions of the problem, lower bounds on worst case ratios and related results.This work was partially supported by the Christian Doppier Laboratorium für Diskrete Optimierung.  相似文献   

17.
Bin packing heuristics are generalized and adapted to solve the assembly line balancing problem. Worst-case analysis is provided. The results are compared to those for a resource constrained scheduling problem considered by Garey, Graham, Johnson and Yao.  相似文献   

18.
Bin packing with fragmentable items is a variant of the classic bin packing problem where items may be cut into smaller fragments. The objective is to minimize the number of item fragments, or equivalently, to minimize the number of cuts, for a given number of bins. Models based on packing fragmentable items are useful for representing finite shared resources. In this article, we present improvements to approximation and metaheuristic algorithms to obtain an optimality-preserving optimization algorithm with polynomial complexity, worst-case performance guarantees and parametrizable running time. We also present a new family of fast lower bounds and prove their worst-case performance ratios. We evaluate the performance and quality of the algorithm and the best lower bound through a series of computational experiments on representative problem instances. For the studied problem sets, one consisting of 180 problems with up to 20 items and another consisting of 450 problems with up to 1024 items, the lower bound performs no worse than 5 / 6. For the first problem set, the algorithm found an optimal solution in 92 % of all 1800 runs. For the second problem set, the algorithm found an optimal solution in 99 % of all 4500 runs. No run lasted longer than 220 ms.  相似文献   

19.
We define a partition of the unit hypercube into polytopes. These polytopes correspond to arrangements of a sequence of objects into bins in the next fit solution to the one-dimensional bin packing problem. The probability that an arrangement appears is given by the volume of the corresponding polytope in the partition. We show that this volume can be calculated as the solution to a problem of permutation enumeration and apply this technique to analyze the behavior of the next fit algorithm.  相似文献   

20.
We study on-line bounded space bin-packing in the resource augmentation model of competitive analysis. In this model, the on-line bounded space packing algorithm has to pack a list L of items with sizes in (0, 1], into a minimum number of bins of size b, b≥1. A bounded space algorithm has the property that it only has a constant number of active bins available to accept items at any point during processing. The performance of the algorithm is measured by comparing the produced packing with an optimal offline packing of the list L into bins of size 1. The competitive ratio then becomes a function of the on-line bin size b. Csirik and Woeginger studied this problem in [J. Csirik, G.J. Woeginger, Resource augmentation for online bounded space bin packing, Journal of Algorithms 44(2) (2002) 308-320] and proved that no on-line bounded space algorithm can perform better than a certain bound ρ(b) in the worst case. We relax the on-line condition by allowing a complete repacking within the active bins, and show that the same lower bound holds for this problem as well, and repacking may only allow one to obtain the exact best possible competitive ratio of ρ(b) having a constant number of active bins, instead of achieving this bound in the limit. We design a polynomial time on-line algorithm that uses three active bins and achieves the exact best possible competitive ratio ρ(b) for the given problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号