首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The antimony doped tin oxide (SnO2:Sb) (ATO) thin films were prepared by oblique angle electron beam evaporation technique. X-ray diffraction, field emission scanning electron microscopy, UV-vis-NIR spectrophotometer and four-point probe resistor were employed to characterize the structure, morphology, optical and electrical properties. The results show that oblique angle deposition ATO thin films with tilted columns structure are anisotropic. The in-plane birefringence of optical anisotropy is up to 0.035 at α = 70°, which means that it is suitable as wave plate and polarizer. The electrical anisotropy of sheet resistance shows that the sheet resistance parallel to the deposition plane is larger than that perpendicular to the deposition plane and it can be changed from 900 Ω/□ to 3500 Ω/□ for deposition angle from 40° to 85°, which means that the sheet resistance can be effectively tuned by changing the deposition angle. Additionally, the sandwich structure of SiO2 buffer layer plus normal ATO films and oblique angle deposition ATO films can reduce the resistance, which can balance the optical and electrical anisotropy. It is suggested that oblique angle deposition ATO thin films can be used as transparent conductive thin films in solar cell, anti-foggy windows and multifunctional carrier in liquid crystal display.  相似文献   

2.
Nano-Ag particles, with dodecylamine (DDA) and dodecanethiol (DDT) as the protective agent, were prepared and studied in order to investigate the effect of protective agent in the post heat-treatment of nano-Ag films. Results of electrical resistivity, micro-structural evolution and thermal analysis showed that the Ag-DDA films require a lower treatment temperature to convert into conductive materials compared to that of the Ag-DDT films. And the Ag-DDA films also have lower final electrical resistivity as well as more uniform and dense microstructure in comparison with the Ag-DDT films. Further study indicated that Ag-DDA films are thermodynamically unstable and the sinter of Ag-DDA particles could occur spontaneously even at room temperature. FT-IR, 1H NMR and X-ray diffraction determinations revealed that both DDA and DDT molecules coordinate to the surface of nano-Ag particles through their head-groups. The bonding energy of Ag-S is higher than that of Ag-N and the alkyl chains ordering of chemisorbed DDT is also higher than that of chemisorbed DDA. It is implied that the post heat-treatment temperature and final resistivity of nano-Ag films are associated with the bonding energy and configuration of different capping molecules. Finally the conductive ink was prepared with well dispersed Ag-DDA nanoparticles and the ink-jet printed patterns on PI films show a sheet resistance of 166 mΩ/□ after heat-treating at 140 °C for 60 min.  相似文献   

3.
Transparent p-type nickel oxide thin films were grown on polyethylene terephthalate (PET) and glass substrates by RF magnetron sputtering technique in argon + oxygen atmosphere with different oxygen partial pressures at room temperature. The morphology of the NiO thin films grown on PET and glass substrates was studied by atomic force microscope. The rms surface roughnesses of the films were in the range 0.63-0.65 nm. These ultra smooth nanocrystalline NiO thin films are useful for many applications. High resolution transmission electron microscopic studies revealed that the grains of NiO films on the highly flexible PET substrate were purely crystalline and spherical in shape with diameters 8-10 nm. XRD analysis also supported these results. NiO films grown on the PET substrates were found to have better crystalline quality with fewer defects than those on the glass substrates. The sheet resistances of the NiO films deposited on PET and glass substrates were not much different; having values 5.1 and 5.3 kΩ/□ and decreased to 3.05, 3.1 kΩ/□ respectively with increasing oxygen partial pressure. The thicknesses of the films on both substrates were ∼700 nm. It was also noted that further increase in oxygen partial pressure caused increase in resistivity due to formation of defects in NiO.  相似文献   

4.
Transparent conductive SnO2:F thin films with textured surfaces were fabricated on soda-lime-silica glass substrates by spray pyrolysis. Structure, morphology, optical and electrical properties of the films were investigated. Results show that the film structure, morphology, haze, transmittance and sheet resistance are dependent on the substrate temperature and film thickness. An optimal 810 nm-thick SnO2:F film with textured surface deposited at 520 °C exhibits polycrystalline rutile tetragonal structure with a (2 0 0) orientation. The sheet resistance, average transmittance in visible region, and haze of this film were 8 Ω/□, 80.04% and 11.07%, respectively, which are suitable for the electrode used in the hydrogenated amorphous silicon solar cells.  相似文献   

5.
Nickel di-silicide formation induced by RTA process at 850 °C for 60 s in the Ni/Si(1 0 0) systems are investigated as a function of the initial Ni film thickness of 7-89 nm using XRD, RBS, SEM, X-SEM and AFM. Based on the XRD and RBS data, in the silicide films of 400-105 nm, NiSi and NiSi2 silicide phases co-exist, indicating that Ni overlayer is completely transformed to NiSi and NiSi2 silicide phases. SEM reveals that these films consist of large grains for co-existence of NiSi2 and NiSi phases, separated from one another by holes, reflecting that NiSi2 grows as islands in NiSi matrix. These films have low sheet resistance, ranging from 1.89 to 5.44 Ω/□ and good thermal stability. For thicknesses ≤ 80 nm RBS yields more Si-rich silicide phases compared to thicker films, whereas SEM reveals that Si-enriched silicide islands with visible holes grow in Si matrix. As the film thickness decreases from 400 to 35 nm, AFM reveals a ridge-like structure showing a general trend of decreasing average diameter and mean roughness values, while sheet resistance measurements exhibit a dramatic increase ranging from 1.89 to 53.73 Ω/□. This dramatic sheet resistance increase is generated by substantial grain boundary grooving, followed by island formation, resulting in a significant phase transformation from NiSi2-rich to Si-rich silicide phases.  相似文献   

6.
Organic molecules and inorganic nanoparticles were incorporated into transparent and conductive single- or double-wall carbon nanotube (SWNT or DWNT) films, and their electrical and optical properties were measured. When organic tetrafluoro-tetracyanoquinodimethane (F4TCNQ) molecules were incorporated into the nanotube films, sheet resistance was reduced to ∼50% of those from the pristine SWNT and DWNT films. Larger improvements were observed with Au nanoparticle decoration or HNO3/SOCl2 dipping processes. The sheet resistances were measured to be at 75% of transmittance for HNO3/SOCl2-treated DWNT films and at 77% for Au-incorporated DWNT films, making their electrical conductivities 200%-300% better than those of the pristine DWNT films. It was observed that DWNTs have better electrical/optical performance than SWNTs. The relative influence of various dopants, F4TCNQ, Au, and HNO3/SOCl2 as well as microwave irradiation on the optical and electrical properties was identified by using Raman and UV-vis-NIR spectra.  相似文献   

7.
Transparent conductive GZO films were deposited on polycarbonate substrates by electron beam assisted radio frequency (RF) magnetron sputtering and then the influence of electron irradiation on the structural, optical and electrical properties of GZO films was investigated by using X-ray diffractometry, UV-vis spectrophotometry, four point probes, atomic force microscopy and UV photoelectron spectroscopy. Sputtering power was kept constant at 3 W/cm2 during deposition, while electron irradiation energy varied from 450 to 900 eV.Electron irradiated GZO films show larger grain sizes than those of films prepared without electron irradiation, and films irradiated at 900 eV show higher optical transmittance in the visible wavelength region and lower sheet resistance (120 Ω/□) than other films. The work-function is also increased with electron irradiation energy. The highest work-function of 4.4 eV was observed in films that were electron irradiated at 900 eV.  相似文献   

8.
Transparent and conducting TiO2/Au/TiO2 (TAuT) films were deposited by reactive magnetron sputtering on polycarbonate substrates to investigate the effect of the Au interlayer on the optical, electrical, and structural properties of the films. In TAuT films, the Au interlayer thickness was kept at 5 nm. Although total thickness was maintained at 100 nm, the stack structure was varied as 50/5/45, 70/5/25, and 90/5/5 nm.In XRD pattern, the intermediate Au films were crystallized, while all TAuT films did not show any diffraction peaks for TiO2 films with regardless of stack structure. The optical and electrical properties were dependent on the stack structure of the films. The lowest sheet resistance of 23 Ω/□ and highest optical transmittance of 76% at 550 nm were obtained from TiO2 90 nm/Au 5 nm/TiO2 5 nm films. The work function was dependent on the film stack. The highest work function (4.8 eV) was observed with the TiO2 90 nm/Au 5 nm/TiO2 5 nm film stack. The TAuT film stack of TiO2 90 nm/Au 5 nm/TiO2 5 nm films is an optimized stack that may be an alternative candidate for transparent electrodes in flat panel displays.  相似文献   

9.
Highly transparent conductive Al2O3 doped zinc oxide (AZO) thin films have been deposited on the glass substrate by pulsed laser deposition technique. The effects of substrate temperature and post-deposition annealing treatment on structural, electrical and optical properties of AZO thin films were investigated. The experimental results show that the electrical resistivity of films deposited at 240 °C is 6.1 × 10−4 Ω cm, which can be further reduced to as low as 4.7 × 10−4 Ω cm by post-deposition annealing at 400 °C for 2 h in argon. The average transmission of AZO films in the visible range is 90%. The optical direct band gap of films was dependent on the substrate temperature and the annealing treatment in argon. The optical direct band gap value of AZO films increased with increasing annealing temperature.  相似文献   

10.
Transparent conducting indium tin oxide/Au/indium tin oxide (ITO) multilayered films were deposited on unheated polycarbonate substrates by magnetron sputtering. The thickness of the Au intermediated film varied from 5 to 20 nm. Changes in the microstructure, surface roughness and optoelectrical properties of the ITO/Au/ITO films were investigated with respect to the thickness of the Au intermediated layer. X-ray diffraction measurements of ITO single layer films did not show characteristic diffraction peaks, while ITO/Au/ITO films showed an In2O3 (2 2 2) characteristic diffraction peak. The optoelectrical properties of the films were also dependent on the presence and thickness of the Au thin film. The ITO 50 nm/Au 10 nm/ITO 40 nm films had a sheet resistance of 5.6 Ω/□ and an average optical transmittance of 72% in the visible wavelength range of 400-700 nm. Consequently, the crystallinity, which affects the optoelectrical properties of ITO films, can be enhanced with Au intermediated films.  相似文献   

11.
The effect of different annealing methods on the sheet resistance of indium tin oxide (ITO) on polyimide (PI) substrate has been investigated. ITO thin films were prepared by RF magnetron sputtering in pure Ar gas and electro-annealing, this was carried out in the flow of an electric current at several temperatures between 100 and 180 °C in air. Electro- and thermal annealing were compared in order to confirm differences between the electrical, optical and microstructural properties of the ITO thin films. As electro-annealing induced the predominant growth of crystallites of ITO thin films along (4 0 0) plane, the sheet resistance of ITO films that were electro-annealed for 2 mA at 180 °C considerably decreased from 50 to 28 Ω/cm2.  相似文献   

12.
The synthesis and characterization of a new molecular silver precursor is reported. The presented complex [Ag(DioxoNic)2]NO3 (DioxoNic=(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl nicotinate) can be obtained by the reaction of silver(I) nitrate and (2,2-Dimethyl-1,3-dioxolan-4-yl)methyl nicotinate in ethanol. The product crystallizes in the monoclinic space group P21/c (No. 14). Concentrated ethanolic solutions allow the fabrication of thin films via dip coating. Using UV-irradiation and subsequent moderate temperature treatment compact films of elemental silver can be obtained. The resulting silver films show excellent electrical properties with sheet resistances down to 0.7 Ω/sq at a film thickness of 25 nm corresponding to a specific electrical resistance of 1.75×10−8 Ωm very close to the value of bulk silver. For the potential application in optoelectronic devices, the complex was tested as an ink in a soft printing process for the preparation of patterned silver films.  相似文献   

13.
In this study, highly transparent conductive Ga-doped Zn0.9Mg0.1O (ZMO:Ga) thin films have been deposited on glass substrates by pulsed laser deposition (PLD) technique. The effects of substrate temperature and post-deposition vacuum annealing on structural, electrical and optical properties of ZMO:Ga thin films were investigated. The properties of the films have been characterized through Hall effect, double beam spectrophotometer and X-ray diffraction. The experimental results show that the electrical resistivity of film deposited at 200 °C is 8.12 × 10−4 Ω cm, and can be further decreased to 4.74 × 10−4 Ω cm with post-deposition annealing at 400 °C for 2 h under 3 × 10−3 Pa. In the meantime, its band gap energy can be increased to 3.90 eV from 3.83 eV. The annealing process leads to improvement of (0 0 2) orientation, wider band gap, increased carrier concentration and blue-shift of absorption edge in the transmission spectra of ZMO:Ga thin films.  相似文献   

14.
Without intentionally heating the substrates, indium tin oxide (ITO) thin films of thicknesses from 72 nm to 447 nm were prepared on polyethylene terephthalate (PET) substrates by DC reactively magnetron sputtering with pre-deposition substrate surfaces plasma cleaning. The dependence of structural, electrical, and optical properties on the films thickness were systematically investigated. It was found that the crystal grain size increases, while the transmittance, the resistivity, and the sheet resistance decreases as the film thickness was increasing. The thickest film (∼447 nm) was found of the lowest sheet resistance 12.6 Ω/square, and its average optical transmittance (400-800 nm) and the 550 nm transmittance was 85.2% and 90.4%, respectively. The results indicate clearly that dependence of the structural, electrical, and optical properties of the films on the film thickness reflected the improvement of the film crystallinity with the film thickness.  相似文献   

15.
The indium oxynitride (InON) films were achieved by reactive RF magnetron sputtering indium target which has the purity of 99.999% with a novel reactive gas-timing technique. The structural, optical and electrical properties in a series of polycrystalline InON films affected by gas-timing of reactive N2 and O2 gases introduced to the chamber were observed. The X-ray photoelectron spectroscopy revealed that the oxygen content in thin films that compounded to indium and nitrogen, which increased from 10% in indium nitride (InN) to 66% in indium oxide (In2O3) films. The X-ray diffraction peaks show that the phase of deposited films changes from InN to InON and to In2O3 with an increasing oxygen timing. The hexagonal structure of InN films with predominant (0 0 2) and (0 0 4) orientation was observed when pure nitrogen is only used as sputtering gas, while InON and In2O3 seem to demonstrate body-center cubic polycrystalline structures depending on gas-timing. The surface morphologies investigated from atomic force microscope of deposited films with varying gas-timing of O2:N2 show indifferent. The numerical algorithm method was used to define the optical bandgap of films from transmittance results. The increasing oxygen gas-timing affects extremely to the change of crystallinity phase from InN to InON and to In2O3, the increase of optical bandgap from 1.4 to 3.4 eV and the rise of sheet resistance from 15 Ω/□ to insulator.  相似文献   

16.
A new type of gas sensing material based on metal oxide modification multi wall carbon nanotube (MO/MWCNT) composites is presented since the interface between the composites enhance the carrier density so as to improve the gas sensitivity. Three kinds of MO/MWCNT composite materials, such as ZnO/MWCNT, SnO2/MWCNT and TiO2/MWCNT, have been acquired in situ growth using catalytic pyrolysis method. The MO nano particles have decorated on side of MWCNTs, whereas the introduction of SnO2 nano particles makes part of MWCNT showing two-dimensional form of carbon nano-wall structure. Among four kinds of cathode of ZnO/MWCNTs, SnO2/MWCNTs, TiO2/MWCNTs and pure MWCNT composite film, TiO2/MWCNTs composite has the lowest threshold electric field required to draw current of 12 μA has been found to be ∼1.2 V/μm, and also TiO2/MWCNTs composite has the highest sensitivity of 16% to ethanol. The TiO2/MWCNTs composite is superior to the others both in vacuum electron transportation and gas sensitivity.  相似文献   

17.
Nanocrystalline SnO2:Sb films were prepared by a sol-gel route using C6H8O7-triethanolamine (TEA) mixing aqueous solution with pH 6.5-7.0. Stannous oxalate and antimony trichloride were used as tin and antimony sources. IR, XRD FESEM, FETEM, UV-vis and four-point probe measurement were used to characterize sol-gel chemistry, structure, morphologies, optical and electrical properties. Mechanism of sol-gel reaction illuminated that existence of TEA supplied large numbers of active tin hydrate and ionized state carboxyl groups for tin and antimony chelation through the amido association with the ionized H+ on -COOH of H3L and H2C2O4. The 6 at.% Sb-doped films with film thickness of 600 nm had sheet resistance as low as 42.85 Ω/ when annealed at 450 °C for 10 min. Annealing temperature intensively altered sheet resistance and optimum was in the range of 450-500 °C. The longer annealing time caused Sb volatilization which led to the optimum doping level shifted from 6 to 12 at.%.  相似文献   

18.
Indium tin oxide (ITO) thin film is one of the most widely used as transparent conductive electrodes in all forms of flat panel display (FPD) and microelectronic devices. Suspension of already crystalline conductive ITO nanoparticles fully dispersed in alcohol was spun, after modifying with coupling agent, on glass substrates. The low cost, simple and versatile traditional photolithography process without complication of the photoresist layer was used for patterning ITO films. Using of UV light irradiation through mask and direct UV laser beam writing resulted in an accurate linear, sharp edge and very smooth patterns. Irradiated ITO film showed a high transparency (∼85%) in the visible region. The electrical sheet resistance decrease with increasing time of exposure to UV light and UV laser. Only 5 min UV light irradiation is enough to decrease the electrical sheet resistance down to 5 kΩ□.  相似文献   

19.
The effects of W doping on the characteristical properties of SnO2 thin films prepared by sol–gel spin coating method were investigated. The SnO2 thin films were deposited at various W doping ratios and characterized by various measurements. XRD studies indicated that the undoped and W doped SnO2 films had cubic and tetragonal phases. The SEM images of WTO thin films showed cubic shaped nanocubes corresponding to cubic phase and the smaller particles corresponding to tetragonal phase were formed on the film surfaces, and their distributions and sizes were dependent on the W doping ratio. EDX spectroscopy analyses showed that the calculated and participated atomic ratios of W/(W + Sn) (at.%) in the starting solution and in the WTO thin films were almost close. It was found that the sheet resistance depended on W doping ratio and 2.0 at.% W doped SnO2 (WTO) exhibited lowest value of sheet resistance (7.11 × 103 Ω/cm2).  相似文献   

20.
The sputtering pressures maintained during the deposition of Cu2O films, by dc reactive magnetron sputtering, influence the structural, electrical and optical properties. The crystalline orientation mainly depends on the sputtering pressure. The films deposited at a sputtering pressure of 4 Pa showed single-phase Cu2O films along (1 1 1) direction. The electrical resistivity of the films increased from 1.1 × 101 Ω cm to 3.2 × 103 Ω cm. The transmittance of the films increased from 69% to 88% with the increase of sputtering pressure from 2.5 Pa to 8 Pa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号