首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zr-Si-N films were deposited on silicon and steel substrates by cathodic vacuum arc with different N2/SiH4 flow rates. The N2/SiH4 flow rates were adjusted at the range from 0 to 12 sccm. The films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), hardness and wear tests. The structure and the mechanical properties of Zr-Si-N films were compared to those of ZrN films. The results of XRD and XPS showed that Zr-Si-N films consisted of ZrN crystallites and SiNx amorphous phase. With increasing N2/SiH4 flow rates, the orientation of Zr-Si-N films became to a mixture of (1 1 1) and (2 0 0). The column width became smaller, and then appeared to vanish with the increase in N2/SiH4 flow rates. The hardness and Young's modulus of Zr-Si-N films increased with the N2/SiH4 flow rates, reached a maximum value of 36 GPa and 320 GPa at 9 sccm, and then decreased 32 GPa and 305 GPa at 12 sccm, respectively. A low and stable of friction coefficient was obtained for the Zr-Si-N films. Friction coefficient was about 0.1.  相似文献   

2.
The previous study [1] indicated that dense thick Cu-4Cr-2Nb coatings could be formed by cold spraying, and the post-spray heat treatment could significantly influence the microstructure and microhardness of the as-sprayed Cu-4Cr-2Nb coatings. In this study, the tensile strength and fracture performance of the Cu-4Cr-2Nb coatings after annealing were investigated. The vacuum heat treatment was conducted under 10−2 Pa at 850 °C for 4 h. Results showed that the heat treatment had a great contribution to the healing-up of the incompleteness of the interfaces between the deposited particles. In addition, the coating microhardness decreased from 156.8 ± 4.6 Hv0.2 for the as-sprayed coatings to 101.7 ± 4.5 Hv0.2 for the annealed ones. The mean tensile strength of the annealed coatings was approximately 294.1 ± 36.1 MPa compared to that of 45.0 ± 10.5 MPa for the as-sprayed ones, which results from the partially metallurgically bonded zones between the deposited particles inducing by the heat treatment process.  相似文献   

3.
TiN-containing amorphous Ti-Al-Si-N (nc-TiN/a-Si3N4 or a-AlN) nanocomposite coatings were deposited by using a modified closed field twin unbalanced magnetron sputtering system which is arc assisted and consists of two circles of targets, at a substrate temperature of 300 °C. XRD, XPS and High-resolution TEM experiments showed that the coatings contain TiN nanocrystals embedded in the amorphous Si3N4 or AlN matrix. The coatings exhibit good mechanical properties that are greatly influenced by the Si contents. The hardness of the Ti-Al-Si-N coatings deposited at Si targets currents of 5, 8, 10, and 12 A were 45, 47, 54 and 46 GPa, respectively. The high hardness of the deposited Ti-Al-Si-N coatings may be own to the plastic distortion and dislocation blocking by the nanocrystalline structure. On the other hand, the friction coefficient decreases monotonously with increasing Si contents. This result would be caused by tribo-chemical reactions, which often take place in many ceramics, e.g. Si3N4 reacts with H2O to produce SiO2 or Si(OH)2 tribolay-layer.  相似文献   

4.
Low-temperature growth (600 °C) of α-Al2O3 coatings on the stainless steel substrate by double glow plasma technique was achieved. The compositions and microstructures of the coatings prepared at different oxygen flow rates were characterized, respectively, by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectrometry. A phenomenological mechanism for the formation of the Al2O3 ceramic coatings during the oxidation process was proposed on the basis of the experimental results. It was obvious that the oxygen flow rates had a great effect on the surface structure of the prepared Al2O3 coatings. The dense and smooth Al2O3 coatings were prepared at the oxygen flow rate of 15 sccm. In addition, the correlations between the mechanical properties of Al2O3 coating and oxygen flow rates were also discussed. The coating prepared at 15 sccm oxygen flow rate exhibited the best mechanical properties with a maximum hardness of 31 GPa and elastic modulus of 321 GPa. The corresponding critical load of scratch adherence for this sample was 47 N.  相似文献   

5.
CrSiN coatings were deposited on stainless steel (Grade: SA304) and silicon Si(1 0 0) substrates, with varying argon-nitrogen gas proportions and deposition temperature, using reactive magnetron sputtering technique in the present work. The influence of sputtering (Ar) and reactive gas proportions (N2) and temperature on the structural properties of the CrSiN coating was investigated. A small amount of silicon content (3.67 at.% Si) plays a crucial role in addition to the nitrogen content for the formation of different phases in the CrSiN coatings as observed in the present work. For example, the coating with comparatively low nitrogen content, 40% N2, during deposition, formed a crystalline structure consisting of nano-crystalline CrN which is separated by an amorphous SiN phase, as evident from X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The formation of CrN(1 1 1) and Cr2N(1 1 1) phases has occurred at 30% N2 with 3.67% Si content, which transformed in to CrN(1 1 1) and CrN(2 0 0) with increase in N2 content but with same Si content. The surface topography and morphology of the coatings were analyzed by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), respectively. A less columnar growth is observed in CrSiN coatings deposited at low argon content, Ar:N2 (20:80), and with 3.67 at.% Si in the coatings. However, it becomes dense with increase in nitrogen content and temperature. The XRD analysis showed that the intensity of a dominating peak (1 1 1) is decreasing from (80:20) to (60:40) argon:nitrogen environment. With a further increase of nitrogen content, from (60:40), in the sputtering gas mixture, to (40:60) argon-nitrogen, there is a sudden increase in (1 1 1) peak and above (40:60), the peak reduction rate is very slow than the previous one. The (1 1 1) and (2 0 0) peak intensity variations are very limited due to high nitrogen content, above 50%, and considerable amount of Si atoms, 3.67 at.%, present in the CrN coatings.  相似文献   

6.
InxGa1−xN thin films with In concentration ranging from 25 to 34 at.% were deposited on sapphire substrate by metal-organic chemical vapor deposition (MOCVD). Crystalline structure and surface morphology of the deposited films were studied by using X-ray diffraction (XRD) and atomic force microscopy (AFM). Hardness, Young's modulus and creep resistance were measured using a nanoindenter. Among the deposited films, In0.25Ga0.75N film exhibits a larger grain size and a higher surface roughness. Results indicate that hardness decreases slightly with increasing In concentration in the InxGa1−xN films ranged from 16.6 ± 1.1 to 16.1 ± 0.7 GPa and, Young's modulus for the In0.25Ga0.75N, In0.3Ga0.7N and In0.34Ga0.66N films are 375.8 ± 23.1, 322.4 ± 13.5 and 373.9 ± 28.6 GPa, respectively. In addition, the time-dependent nanoindentation creep experiments are presented in this article.  相似文献   

7.
In this study, TiO2−xNx/TiO2 double layers thin film was deposited on ZnO (80 nm thickness)/soda-lime glass substrate by a dc reactive magnetron sputtering. The TiO2 film was deposited under different total gas pressures of 1 Pa, 2 Pa, and 4 Pa with constant oxygen flow rate of 0.8 sccm. Then, the deposition was continued with various nitrogen flow rates of 0.4, 0.8, and 1.2 sccm in constant total gas pressure of 4 Pa. Post annealing was performed on as-deposited films at various annealing temperatures of 400, 500, and 600 °C in air atmosphere to achieve films crystallinity. The structure and morphology of deposited films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). The chemical composition of top layer doped by nitrogen was evaluated by X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of samples was measured by degradation of Methylene Blue (MB) dye. The optical transmittance of the multilayer film was also measured using ultraviolet-visible light (UV-vis) spectrophotometer. The results showed that by nitrogen doping of a fraction (∼1/5) of TiO2 film thickness, the optical transmittance of TiO2−xNx/TiO2 film was compared with TiO2 thin film. Deposited films showed also good photocatalytic and hydrophilicity activity at visible light.  相似文献   

8.
Single-phase CrN and CrAlN coatings were deposited on silicon and mild steel substrates using a reactive DC magnetron sputtering system. The structural characterization of the coatings was done using X-ray diffraction (XRD). The XRD data showed that both the CrN and CrAlN coatings exhibited B1 NaCl structure with a prominent reflection along (2 0 0) plane. The bonding structure of the coatings was characterized by X-ray photoelectron spectroscopy and the surface morphology of the coatings was studied using atomic force microscopy. Subsequently, nanolayered CrN/CrAlN multilayer coatings with a total thickness of approximately 1 μm were deposited on silicon substrates at different modulation wavelengths (Λ). The XRD data showed that all the multilayer coatings were textured along {2 0 0}. The CrN/CrAlN multilayer coatings exhibited a maximum nanoindentation hardness of 3125 kg/mm2 at a modulation wavelength of 72 Å, whereas single layer CrN and CrAlN deposited under similar conditions exhibited hardness values of 2375 and 2800 kg/mm2, respectively. Structural changes as a result of heating of the multilayer coatings in air (400-800 °C) were characterized using XRD and micro-Raman spectroscopy. The XRD data showed that the multilayer coatings were stable up to a temperature of 650 °C and peaks pertaining to Cr2O3 started appearing at 700 °C. These results were confirmed by micro-Raman spectroscopy. Nanoindentation measurements performed on the heat-treated coatings revealed that the multilayer coatings retained hardness as high as 2250 kg/mm2 after annealing up to a temperature of 600 °C.  相似文献   

9.
Nickel thin films were deposited on glass substrates at different N2 gas contents using a dc triode sputtering deposition system. Triode configuration was used to deposit nanostructured thin films with preferred orientation at lower gas pressure and at lower substrate temperature compared to the dc diode sputtering system. A gradual evolution in the composition of the films from Ni, Ni(N), to Ni3N was found by X-ray diffraction analysis. The preferred growth orientation of the nanostructured Ni films changed from (1 1 1) to (1 0 0) for 9% N2 at 100 °C. Ni3N films were formed at 23% N2 with a particle size of about 65 nm, while for 0% and 9% of nitrogen, the particles sizes were 60 nm, and 37 nm, respectively, as obtained by atomic force microscopy. Magnetic force microscopy imaging showed that the local magnetic structure changed from disordered stripe domains of about 200 nm for Ni and Ni(N) to a structure without a magnetic contrast, indicating the paramagnetic state of this material, which confirmed the structural transformation from Ni to Ni3N.  相似文献   

10.
This study reports the influence of growth conditions on the characteristics of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering at various N2-to-total (N2 + Ar) flow ratio, which is RN. The crystal structures, microstructure, and mechanical properties for different RN were characterized by electron spectroscopy for chemical analysis, X-ray diffraction, atomic force microscopy, field-emission-scanning electron microscopy, transmission electron microscopy, and nanoindentation. The results indicate that the TiVCrZrY alloy and nitride coatings have hexagonal close-packed (hcp)-type and sodium chloride (NaCl)-type solid-solution structures, respectively. The voids in the coatings are eliminated and the growth of the columnar crystal structures is inhibited along with an increasing RN. As a consequence, highly packed equiaxed amorphous structures with smooth surfaces are formed. The coatings accordingly achieved a pronounce hardness of 17.5 GPa when RN = 100%.  相似文献   

11.
Chromium aluminum nitride (Cr1−xAlxN) coatings were deposited onto AISI H13 steel and silicon substrates by r.f. reactive magnetron co-sputtering in (Ar/N2) gas mixture from chromium and aluminum targets. Properties of deposited Cr1−xAlxN coatings such as compositional, structural, morphological, electrochemical, mechanical and tribological, were investigated as functions of aluminum content. X-ray diffraction patterns of Cr1−xAlxN coatings with different atomic concentrations of aluminum (0.51 < x < 0.69) showed the presence and evolution of (1 1 1), (2 0 0), and (1 0 2) crystallographic orientations associated to the Cr1−xAlxN cubic and w-AlN phases, respectively. The rate of corrosion of the steel coated with Cr1−xAlxN varied with the applied power; however, always being clearly lower when compared to the uncoated substrate. The behavior of the protective effect of the Cr1−xAlxN coatings is based on the substitution of Cr for Al, when the power applied to the aluminum target increases. The mechanical properties were also sensitive to the power applied, leading to a maximum in hardness and a reduced elastic modulus of 30 and 303 GPa at 350 W and a monotonic decrease to 11 and 212 GPa at 450 W, respectively. Finally, the friction coefficient measured by pin-on disk revealed values between 0.45 and 0.70 in humid atmosphere.  相似文献   

12.
The polycrystalline Ti/TiNx multilayer films were deposited by magnetron sputtering, and the as-deposited multilayer coatings were annealed at 500-800 °C for 2-4 h in vacuum. We investigated the effects of annealing temperature and annealing time on the microstructural, interfacial, and mechanical properties of the polycrystalline Ti/TiNx multilayer films. It was found that the hardness increased with annealing temperature. This hardness enhancement was probably caused by the preferred crystalline orientation TiN(1 1 1). The X-ray reflectivity measurements showed that the layer structure of the coatings could be maintained after annealing at 500 °C and the addition of the Si3N4 interlayer to Ti/TiNx multilayer could improve the thermal stability to 800 °C.  相似文献   

13.
To prevent Co diffusion from cemented carbides at high temperatures, we fabricated TaNx coatings by reactive direct current (d.c.) magnetron sputtering onto 6 wt.% cobalt cemented carbide substrates, to form diffusion barrier layers. Varying the nitrogen flow ratio, N2/(Ar + N2), from 0.05 to 0.4 during the sputtering process had a significant effect on coating structure and content. Deposition rate reduced as the nitrogen flow ratio increased. The effects of nitrogen flow ratio on the crystalline characteristics of the TaNx coatings were examined by X-ray diffraction. The TaNx coatings annealing conditions were 500, 600, 700, and 800 °C for 4 h in air. We evaluated the performance of the diffusion barrier using both Auger electron spectroscopy depth-profiles and X-ray diffraction techniques. We also investigated oxidation resistance of the TaNx coatings annealed in air, and under a 50 ppm O2-N2 atmosphere, to evaluate the fabricated layers effectiveness as a protective coating for glass molding dies.  相似文献   

14.
Ti-B-C-N nanocomposite coatings with different C contents were deposited on Si (1 0 0) and high speed steel (W18Cr4V) substrates by closed-field unbalanced reactive magnetron sputtering in the mixture of argon, nitrogen and acetylene gases. These films were subsequently characterized ex situ in terms of their microstructures by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM), their nanohardness/elastic modulus and facture toughness by nano-indention and Vickers indentation methods, and their surface morphology using atomic force microscopy (AFM). The results indicated that, in the studied composition range, the deposited Ti-B-C-N coatings exhibit nanocomposite based on TiN nanocrystallites. When the C2H2 flow rate is small, incorporation of small amount of C promoted crystallization of Ti-B-C-N nanocomposite coatings, which resulted in increase of nano-grain size and mechanical properties of coatings. A maximum grain size of about 8 nm was found at a C2H2 flux rate of 1 sccm. However, the hardness, elastic modulus and fracture toughness values were not consistent with the grain size. They got to their maximum of 35.7 GPa, 363.1 GPa and 2.46 MPa m1/2, respectively, at a C2H2 flow rate of 2 sccm (corresponding to about 6 nm in nano-grain size). Further increase of C content dramatically decreased not only grain size but also the mechanical properties of coatings. The presently deposited Ti-B-C-N coatings had a smooth surface. The roughness value was consistent with that of grain size.  相似文献   

15.
TiO2 coatings were grown on Ti and Si by Atomic Layer Deposition (ALD) from titanium ethoxide and water at 300 °C in a wide range of the reaction cycles number N = 100-2000. TiO2 coatings were found to be amorphous at low value of N < 300 while the coatings grown at N ≥ 300 revealed anatase polycrystalline structure. The TiO2 coatings bioactivity was evaluated by hydroxyapatite forming ability by the technique of soaking in Simulated Body Fluid (SBF). Correlation between bioactivity and structural properties of TiO2 was determined. X-ray diffraction and scanning electron microscopy with electron probe microanalysis showed that amorphous TiO2 coating did not induce the hydroxyapatite growth whereas anatase resulted in the hydroxyapatite forming on the samples surfaces which confirmed TiO2 anatase bioactivity.  相似文献   

16.
The ellipsometric characterizations of amorphous beryllium nitride (a-Be3N2) thin films deposited on Si (1 0 0) and quartz at temperature <50 °C using reactive RF sputtering deposition were examined in the wavelength range 280-1600 nm. X-ray diffraction of the films showed no structure, suggesting the Be3N2 films grown on the substrates are amorphous. The composition and chemical structures of the amorphous thin films were determined by using electron spectroscopy for chemical analysis. The surface morphology of a-Be3N2 was characterized by atomic force microscopy. The thicknesses and optical constants of the films were derived from spectroscopic ellipsometry measurements. The variation of the optical constants with thickness of the deposited films has been investigated. From the angle dependence of the polarized reflectivity we deduced a Brewster angle of 64°. At any angle of incidence, the a-Be3N2 shown high transmissivity (80-99%) and low reflectivity (<18%) in the visible and near infrared regions. Hence, the a-Be3N2 could be a good candidate for antireflection optical coatings under conditions of optimized the type of polarization and the angle of incidence.  相似文献   

17.
ZrNx films were sputtered in an Ar + N2 atmosphere, with different substrate biases (0 to −200 V) at various nitrogen flow ratios (%N2 = 0.5-24%). The surface morphology, resistivity, crystllinity, and bonding configuration of ZrNx films, before and after vacuum annealing, were investigated. As compared with ZrNx films grown without substrate bias, before and after annealing, the resistivity of 1% and 2% N2 films decreases with increasing substrate biases. Simultaneously, if the applied bias is too high, the crystallinity of ZrNx film will decrease. The surfaces of 1% and 2% N2 flow films deposited without bias have small nodules, whereas the surface morphology of films deposited at −100 V of substrate bias exhibits large nodules and rugged surface. Once a −200 V of substrate bias is applied to the substrate, the surface morphology of ZrNx films, grown at 1% and 2% nitrogen flow ratios, is smooth. Furthermore, there are two deconvoluted peaks in XPS spectra (i.e., Zr-O and Zr-N) of ZrNx films deposited at −200 V of substrate bias before and after annealing. On the other hand, the surface morphology changes dramatically from rugged surfaces for film deposited at lower nitrogen flow ratio (%N2 < 1%) to smoother and denser surfaces for film grown at higher nitrogen flow ratio (%N2 ≥ 1%). The Zr-N bonding in 2% N2 films still exist after annealing at 700 °C, while the Zr-N bonding in 0.5% and 16% N2 flow film vanish at the same temperature. The connection between the resistivity, crystallinity, surface morphology, and bonding configuration of ZrNx films and how they are influenced by the substrate bias and nitrogen flow ratio are discussed in this paper.  相似文献   

18.
A series of TiSixNy superhard coatings with different Si contents were prepared on M42 steel substrates using two Ti and two Si targets by reactive magnetron sputtering at 500 °C. These samples were subsequently vacuum-annealed at 500, 600, 700, 800 and 900 °C, respectively. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), microindenter, Rockwell hardness tester and scratch tester were applied to investigate the microstructure, phase configuration, hardness and adhesion properties of as-deposited and annealed samples. The results indicated that there were two bonds, TiN and Si3N4, in all presently deposited TiSixNy thin films, that structure was nanocomposite of nanocrystalline (nc-) TiN embedded into amorphous Si3N4 matrices. Annealing treatment below 900 °C played a little role in microstructure and hardness of the coatings although it greatly affected those of steel substrates. The film-substrate adhesion strength was slightly increased, followed by an abrupt decrease with increasing annealing temperature. Its value got to the maximum at 600 °C. Annealing had little effect on the friction coefficient with its value varying in the range of 0.39-0.40.  相似文献   

19.
In situ formation of ceramic coatings on Q235 carbon steel was achieved by plasma electrolytic oxidation (PEO) in carbonate electrolyte and silicate electrolyte, respectively. The surface and cross-section morphology, phase and elemental composition of PEO coatings were examined by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The bond strength of the coating was determined using a direct pull-off test. The hardness as well as tribological properties of the ceramic coating was primarily studied. The results indicated that the coating obtained in carbonate electrolyte was Fe3O4, while the coating achieved from silicate electrolyte was proved to be amorphous. Both kinds of coatings showed coarse and porous surface. The Fe3O4 coatings obtained in carbonate electrolyte showed a high bonding strength to the substrate up to 20 ± 2 MPa and the value was 15 ± 2 MPa for the amorphous coatings obtained in carbonate electrolyte. The micro hardness of the amorphous coating and the Fe3O4 coating was 1001 Hv and 1413 Hv, respectively, which was more than two and three times as that of the Q235 alloy substrate (415 Hv). The friction coefficient exhibited by amorphous coating and Fe3O4 coating was 0.13 and 0.11, respectively, both lower than the uncoated Q235 substrate which ranged from 0.17 to 0.35.  相似文献   

20.
Compositionally gradient CrNx coatings were fabricated using arc ion plating by gradually increasing N2 flow rate during the deposition process. The effect of substrate bias, ranging from 0 to −250 V, on film microstructure and mechanical properties were systematically investigated with XRD, SEM, HRTEM, nanoindentation, adhesion and wear tests. The results show that substrate bias has an important influence on film microstructure and mechanical properties of gradient CrNx coatings. The coatings mainly crystallized in the mixture of hexagonal Cr2N, bcc Cr and fcc rock-salt CrN phases. N2 flow rate change during deposition results in phase changes in order of Cr, Cr + Cr2N, Cr2N, Cr2N + CrN, and CrN, respectively, along thickness direction. Phase fraction and preferred orientation in CrNx coatings vary with substrate bias, exerting an effective influence on film hardness. With the increasing of bias, film microstructure evolves from an apparent columnar structure to a highly dense one. The maximum hardness of 39.1 GPa was obtained for the coatings deposited at a bias of −50 V with a friction coefficient of 0.55. It was also found that adhesion property and wear resistance of gradient CrNx coatings were better than that of homogeneous CrN coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号