首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on a newly developed anti-sticking resin obtained by mixing a fluorine-containing monomer (F-monomer) for UV nanoimprinting lithography (UV-NIL) to reduce the contact adhesion force during the demolding process. The new resin system shows an enhanced reliability and resolution of pattern transfer with no treatment on the surface of the quartz stamp. We fabricated various nanopatterns with F-monomer resins of various concentrations in the low pressure UV-NIL. The number of process steps of a release layer treatment for UV-NIL was reduced by using F-monomer with anti-sticking property.  相似文献   

2.
In thermal nanoimprint lithography, temperature is one of the most important process parameters. Temperature is not only important for the flow of resist during molding but also for demolding, the process by which the imprint stamp is removed from the molded resist/substrate. This is because thermal stress and friction and adhesion forces generated at the stamp/resist interface and the mechanical strength of the resist are all dependent on temperature. In this paper, we demonstrate via both experimentation and numerical simulation that an optimal temperature (T d) leading to minimal deformation of molded resist exists for demolding. The ease of demolding was directly accessed by measuring demolding force at different T d for a Si stamp/PMMA/Si substrate system of 4-in.-diameter using a mechanical tester. Numerically, the demolding process for a simple two-dimensional model of a Si stamp/poly(methyl methacrylate) (PMMA) resist/Si substrate system was simulated using a finite-element method for different T d, assuming viscoelasticity of the PMMA resist and temperature dependence of friction coefficients at the stamp/PMMA interface. We found that a temperature leading to the minimum in both the demolding force and the normalized stress vs. T d curves exists below the glass transition temperature of the PMMA resist, from which the optimal T d was derived.  相似文献   

3.
UV imprint lithography has been initiated as an enabling, cost-effective technique to achieve 100 nm resolution patterning in recent years. However, the adhesion between resist and imprint template is one of the critical problems for the industrial application of imprint lithography. In this paper, two kinds of measures, including increase of surface roughness of template and application of a fluorinated release agent as self-assembled monolayers (SAMs) to the template surface, were taken to overcome the adhesion between resist and template. The test results of contact angle showed that the appropriate increase of surface roughness could improve hydrophilicity of template surface greatly, and improved the hydrophobicity of template surface when it was combined with self-assembled monolayers. The XPS, DRIR spectra indicated that the fluorinated release layers were successfully prepared on the surface of template using the process in the paper. The surface free energy of the template was 16.6 mN/m, and less than that of PTFE (18 mN/m). The imprint experiment results also showed that the anti-adhesion performance of treated template was improved greatly during detaching procedure, and the demolding force decreased by 56.64% in comparison with that of untreated template.  相似文献   

4.
We studied the influence of the elastic modulus on the gecko-inspired dry adhesion by regulating the elastic modulus of bulk polyurethane combined with changing the size of microarrays. Segmented polyurethane (PU) was utilized to fabricate micro arrays by the porous polydimethyl siloxane (PDMS) membrane molding method. The properties of the micro arrays, such as the elastic modulus and adhesion, were investigated by Triboindenter. The study demonstrates that bulk surfaces show the highest elastic modulus, with similar values at around 175 MPa and decreasing the arrays radius causes a significant decrease in E, down to 0.62 MPa. The corresponding adhesion experiments show that decrease of the elastic modulus can enhance the adhesion which is consistent with the recent theoretical models.  相似文献   

5.
When silicone diacrylate was added in small amount (<5 wt.%) to ultraviolet (UV) curable formulations containing other oligomeric diacrylates, there was segregation of the silicone additive at the solid substrate-formulation interface. The amount was quantified by X-ray photoelectron spectroscopy measurement of the UV cured film surface composition. The effect of silicone diacrylate concentration, resin formulation and substrate polarity on silicone surface excess was systematically studied. Young's-Gibbs adsorption theory was applied to the prediction of the silicone surface excess at the solid substrate interface for these oligomeric mixtures. Further, we proposed a simplified Young's-Gibbs adsorption theory equation to predict the variation of surface excess from only formulation surface tension and substrate critical surface tension. The selective segregation is beneficial to demolding in UV embossing since only small amount of release added can result in large decrease of the mold-resin interfacial energy difference leading to easy demolding and high replication fidelity.  相似文献   

6.
We have carried out a series of tests on electrorheological elastomers, which consist of semi-conducting solid particles dispersed in a low-conductivity silicone-based elastomer, with the investigations focussing on the dependence of the DC electric current on the elastomer modulus. We find that when other conditions are held constant, the electric current under a particular electric field shows a significant decrease when an elastomer of higher modulus is used. This behaviour is explained qualitatively using a simple model based on the mechanical equilibrium of two competing forces: the electrostatic attraction force between the two adjacent particles in the field direction, and the elastic squeezing force due to the elastomer between the particles which resists their approach.  相似文献   

7.
Z. Song 《哲学杂志》2013,93(28):3215-3233
Oscillatory sliding contact between a rigid rough surface and an elastic–plastic half-space is examined in the context of numerical simulations. Stick-slip at asperity contacts is included in the analysis in the form of a modified Mindlin theory. Two friction force components are considered – adhesion (depending on the real area of contact, shear strength and interfacial adhesive strength) and plowing (accounting for the deformation resistance of the plastically deformed half-space). Multi-scale surface roughness is described by fractal geometry, whereas the interfacial adhesive strength is represented by a floating parameter that varies between zero (adhesionless surfaces) and one (perfectly adhered surfaces). The effects of surface roughness, apparent contact pressure, oscillation amplitude, elastic–plastic properties of the half-space and interfacial adhesion on contact deformation are interpreted in the light of numerical results of the energy dissipation, maximum tangential (friction) force and slip index. A non-monotonic trend of the energy dissipation and maximum tangential force is observed with increasing surface roughness, which is explained in terms of the evolution of the elastic and plastic fractions of truncated asperity contact areas. The decrease of energy dissipation with increasing apparent contact pressure is attributed to the increase of the elastic contact area fraction and the decrease of the slip index. For a half-space with fixed yield strength, a lower elastic modulus produces a higher tangential force, whereas a higher elastic modulus yields a higher slip index. These two competing effects lead to a non-monotonic dependence of the energy dissipation on the elastic modulus-to-yield strength ratio of the half-space. The effect of interfacial adhesion on the oscillatory contact behaviour is more pronounced for smoother surfaces because the majority of asperity contacts deform elastically and adhesion is the dominant friction mechanism. For rough surfaces, higher interfacial adhesion yields less energy dissipation because more asperity contacts exhibit partial slip.  相似文献   

8.
卿涛  邵天敏  温诗铸 《物理学报》2007,56(3):1555-1562
对两材料表面黏附过程进行了理论分析,得出了跳触距离的计算公式,发现跳触距离与试样的几何尺寸和系统的刚度有关,而且也受到相对湿度的影响. 利用单峰接触模型和幂律流体的本构方程,对材料表面吸附的水膜进行了动力学分析,改进了描述拉开力和停留时间关系的方程. 并利用自制的黏附力测试装置对跳触力和拉开力进行了测试和分析. 关键词: 黏附 范德华力 相对湿度 水膜  相似文献   

9.
《Composite Interfaces》2013,20(8):671-683
Dicumyl peroxide (DCP) is commonly applied as a cross-linking agent in polymer processing. The main aim of this work was to assess the ability of DCP to improve adhesion between polylactide (PLA) and flax or hemp fibres by their interphase cross-linking. Short fibre-reinforced PLA composites were manufactured due to the importance of short fibres in injection moulding of high-quality biocomposites. Reactive extrusion of the PLA, flax or hemp fibres, and DCP was performed. The flax or hemp fibre content was 10?wt%, while DCP varied with 0.5 and 2.5?wt%. The fibres and PLA were mechanically mixed, extruded, granulated and injection moulded to form samples for testing. The samples were characterized by differential scanning calorimetry (DSC), tensile and impact strength tests, dynamic mechanical analysis and scanning electron microscopy (SEM). It was found that flax and hemp fibres increased the Young’s modulus while these fibres decreased the impact strength. Addition of DCP led to increase in PLA crystallinity at the interface with fibres which led to further decrease in impact strength. For that reason, it was concluded that DCP is an ineffective agent to improve interphase adhesion between PLA and short flax or hemp fibres.  相似文献   

10.
UV irradiation has interesting potential for the photochemical modification of polymers. In order to study cross-linking effects and/or thin-layer deposition following a treatment in the presence of bi-functional media or in inert atmosphere, irradiation of PET in various atmospheres was performed using a KrCl excimer lamp. Surface properties were investigated by atomic force microscopy, nanoindentation, micro-thermal analysis, and X-ray photo-electron spectroscopy. The studies reveal that surface chemical composition, morphology, adhesion, thermomechanics, and stiffness/modulus are strongly affected by UV irradiation in the presence of bi-functional media. Films treated in octadiene and argon show an increase of surface modulus, much less expansion, and lower soft/melt temperatures, which is an indication of the surface cross-linking effect and a decrease of crystallinity within the near-surface layer. In the case of a diallylphthalate-treated film, depending on the local structure, either a strong decrease of melting temperature or no melting point is found, which is attributed to the irregular cross linking and thickness of the modified layer associated with a decrease of surface modulus. A significant increase of the alkali resistance is found after irradiation, as a result of both wetting and cross-linking effects on the polymer surface.  相似文献   

11.
利用时变场理论和瞬态动力学方程建立了电极及其支撑结构的瞬态耦合模型,分析了瞬态电磁场各参数的分布特点,并求解了电极及其支撑结构的动态响应状态参数。计算结果表明:玻璃钢支撑结构对于脉冲电流形成的冲击力载荷具有很好的缓冲作用;低弹性模量支撑材料在脉冲上升沿和峰值阶段均会产生波动性形变,但该波动性形变对电极间距不会造成太大的影响。  相似文献   

12.
Atomic force microscopy (AFM) is a powerful tool in imaging cells and tissues and probing their mechanical properties. Articular chondrocytes, the cells responsible for the production and maintenance of cartilaginous extracellular matrix in the knee joint, change their morphology and dedifferentiate during in vitro expansion culture. It was unclear if the mechanical properties of chondrocytes change accompanying phenotype variation. The elasticity of in vitro serially cultured bovine articular chondrocytes was investigated using AFM. The chondrocytes changed their morphology from round to spindle-like. The freeze-dried P0 chondrocytes showed significantly higher modulus than did the serially passaged (P1–P4) chondrocytes. The change of chondrocyte morphology was accompanied with a decrease of elastic modulus.  相似文献   

13.
Adhesive properties (adhesion force and adhesion coefficient) of contacts between elastic bodies with rough surfaces have been investigated and adhesion maps constructed showing the dependence of adhesive properties on the roughness, rms slope of the surface, elastic modulus, surface energy and fractal dimension. Simulations have been carried out in the frame of the method of reduction of dimensionality.  相似文献   

14.
段芳莉  王光建  仇和兵 《物理学报》2012,61(4):46801-046801
本文应用大规模分子动力学方法, 模拟了两种具有不同粗糙形貌的、刚性球形探头与弹性平面基体之间的纳米尺度接触, 计算了探头与基体之间的拉离力和黏着功, 研究了接触过程中界面黏着力随载荷的变化规律, 分析了接触界面原子的法向应力分布. 研究发现, 原子级光滑接触的黏着力随着载荷的增大而线性增大, 而原子级粗糙接触的黏着力-载荷曲线分为以不同斜率增长的两个阶段. 相比于原子级光滑探头, 原子级粗糙探头与基体之间具有较小的拉离力和黏着功, 却在接触过程中形成了较大的黏着力. 因此, 拉离力和黏着功不能表征出纳米接触过程中原子吸引作用对界面法向力的贡献大小.  相似文献   

15.
S. Subramanian  S. Sampath 《Pramana》2005,65(4):753-761
The effect of chain length on the adhesion behaviour of n-alkanethiols CH3(CH2)nSH, wheren = 5, 6, 7, 9, 10, 11, 14 and 15 has been followed by carrying out pull-off force measurement using atomic force microscopy (AFM). The self-assembled monolayers on Au(111) surface has been characterized by reflection absorption infra-red spectroscopy (RAIRS) and contact mode AFM. It is observed that the work of adhesion is independent of thiol chain length though the standard deviation is high for short chain length thiol-based monolayers. This may be attributed to the relatively more deformable nature of the short chain thiol films due to their heterogeneity in the monolayer structure than the long chain ones. This, in turn, increases the contact area/volume between the AFM tip and the monolayer, and hence the force of adhesion. However, in the presence of water, the force of adhesion is lower than that observed in air reflecting the effects of capillary forces/polar components associated with the surface energy.  相似文献   

16.
提出了一种纳米尺度的有限元方法,碳纳米管中的碳-碳化学键被模拟为键单元.按照平衡关系,根据有限元理论,作用于每个碳原子上的作用力可以写成键单元的刚度矩阵与每个碳原子位移的乘积.在分子力学的基本假设下,键单元刚度矩阵的每个元素可以写为分子力学中力场常数的函数,这样建立起了宏观力学方法(有限元)与纳米尺度力学方法(分子力学)之间的联系.应用该方法模拟了扶椅型与锯齿型单壁碳纳米管的力学行为从而验证了该方法的有效性.分析结果说明单壁碳纳米管的弹性模量与管厚度的选取直接相关.此外,弹性模量对所选取的分子力学中的力场常数非常敏感,管的弹性模量显示出对半径的尺度依赖性,但是管长度对弹性模量的影响小到可以被忽略.  相似文献   

17.
Work of adhesion is the crucial material parameter for application of theories of adhesive contact. It is usually determined by experimental techniques based on the direct measurements of pull-off force of a sphere. These measurements are unstable due to instability of the load-displacement diagrams at tension, and they can be greatly affected by roughness of contacting solids. We show how the values of work of adhesion and elastic contact modulus of materials may be quantified using a new indirect approach (the Borodich?CGalanov (BG) method) based on an inverse analysis of a stable region of the force-displacements curve obtained from the depth-sensing indentation of a sphere into an elastic sample. Using numerical simulations it is shown that the BG method is simple and robust. The crucial difference between the proposed method and the standard direct experimental techniques is that the BG method may be applied only to compressive parts of the force-displacements curves. Finally, the work of adhesion and the elastic modulus of soft polymer (polyvinylsiloxane) samples are extracted from experimental load-displacement diagrams.  相似文献   

18.
王晓平  胡海龙 《物理》2003,32(4):257-262
简述了高聚物薄膜玻璃化转变的复杂性,并结合文章作者的的一些研究结果介绍了扫描力显微术(SFM)在研究高聚物玻璃化转变中的一些方法,包括观察高聚物薄膜形貌的变化,测量其摩擦力、粘附力和弹性模量等物理量的变化,最后指出SFM是研究高聚物薄膜玻璃化转变的有力工具。  相似文献   

19.
We investigate a new type of surface instability of a thin elastic film subjected to surface interactions such as van der Waals and electrostatic forces from another solid surface in its vicinity. It is found that a sufficiently soft (shear modulus <10 MPa) and nearly incompressible film deforms to form an undulating pattern without any mass transport. A novel feature is that the characteristic length scale of the pattern is nearly independent of the nature and magnitude of the external force, but varies linearly with the film thickness. These results explain some recent experiments and are applicable to problems such as adhesion and friction at soft solid interfaces, peeling of adhesives, patterning of solid surfaces, etc.  相似文献   

20.
Molecular dynamics simulations of nanoimprint lithography (NIL) were performed to investigate the effects of three critical process parameters in NIL: stamp shape, adhesive energy between the stamp and polymer film, and imprint temperature. The proposed simulation model of the NIL process consists of an amorphous SiO2 stamp with a line pattern, an amorphous poly(methylmethacrylate) film, and a Si substrate under the periodic boundary condition in the horizontal direction to simulate a real NIL process imprinting periodical line patterns. The behavior of polymer deformation and the effects of adhesion on pattern transfer were investigated by observing the deformation process, calculating the imprint and separation forces, and analyzing the density and stress distribution inside the polymer film. In addition, their dependency on the process parameters is also discussed with reference to the changes in pattern shape, adhesive energy between the stamp and polymer atoms, and imprint temperature of the polymer film. During the imprint process, the rectangular pattern shows inferior cavity filling and higher stress concentration compared to trapezoidal and triangular patterns because it requires much larger flow and deformation of the polymer film. Low imprint temperature also produces high stress concentration and large imprint force due to the lower fluidity of polymer film. In the separation process, the rectangular pattern generates the largest separation force and causes the most serious defects of the transferred pattern and even the polymer film, while the triangular pattern shows the most satisfactory pattern transfer. In addition, the adhesive energy between the stamp and the polymer film also strongly influences the adhesion between the stamp and the polymer film. Low adhesive energy reduces the separation force of the stamp and transferred pattern defects, and therefore enhances the quality of pattern transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号