首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
采用一种改进的液相成膜技术——连续离子层吸附与反应(SILAR)法, 用锌氨络离子\[Zn(NH3)4\]2+ 溶液作为独立的前驱体溶液, 以载玻片为衬底, 在(125±5) ℃的温度下沉积出致密、 透明的ZnO薄膜。 分别用冷场发射型扫描电镜(FESEM)和X射线衍射(XRD)分析了薄膜样品的表面形貌和结晶状态, 用紫外可见分光光度计(UV-Vis spectroscopy)研究了薄膜样品的发光性能。 结果表明: 获得样品为六角纤锌矿结构的多晶薄膜材料沿\[002\]方向择优生长; 样品表面均匀、 致密, 厚度约为550 nm;在可见光波段具有高的透射率(>80%)。 A modified solution method,successive ionic layer adsorption and reaction(SILAR),was applied to prepare transparent zinc oxide(ZnO) film on glass substrate at (125±5) ℃ in mixed ion precursor solution. The surface morphology and crystallizations of films were analyzed by field emission scanning microscopy(FESEM) and X ray diffraction(XRD), respectively. The optical properties of the films were studied by ultraviolet visible(UV Vis)spectroscopy. The results show that the obtained samples are polycrystalline films of hexagonal wurtzite structure,with the preference of [002\] orientation. The as deposited films exhibit uniform and compact surface morphology, with the film thickness of 550 nm, and have high transmittance in the visible band(>80%).  相似文献   

2.
Effects of variation of the oxygen partial pressure on the structural and optical properties of zinc oxide (ZnO) thin films prepared by reactive radio-frequency sputtering were investigated. Measurements by X-ray diffraction (XRD) and atomic force microscopy (AFM) indicated that the crystallinity and the surface morphology were sensitive to the oxygen partial pressure. The interfacial and optical properties of the targeted films were investigated by spectroscopic ellipsometry (SE) characterization. Based on Tauc-Lorentz (TL) model, the optical constants of ZnO films were tentatively extracted in the photon energy ranging from 1.5 to 6.0 eV. Analyses by XRD and SE revealed that the oxygen partial pressure had effect on the orientation of the ZnO films, the surface morphology, the packing density, and the interfacial layers. And the relationship between crystallinity and interfacial layer, as well as the relationship between surface roughness and packing density was discussed. All these had a significant impact on the optical properties illustrated by SE analysis.  相似文献   

3.
Zinc oxide (ZnO) thin films were deposited on LiNbO3 (LN) single crystals with 200 nm thicknesses by three different ways, where coating of zinc (Zn) film was followed by thermal oxidation for four, two, and one steps with 50, 100, and 200 nm thicknesses repeatedly. Sample, which was produced at 4-step of deposition and oxidation of Zn layer, showed high transmittance and low structural defect due to a lower photoluminescence intensity and Urbach energy. Average grain size in X-ray diffraction (XRD), scanning electron microscopy (SEM) micrograph, and atomic force microscopy (AFM) images for multilayer of ZnO was lower than monolayer of ZnO thin films. Applying multilayer coating technique leads to decrease of surface roughness and scattering on light on surface and fabrication of LiNbO3 waveguides with lower optical loss.  相似文献   

4.
In掺杂ZnO薄膜的制备及其特性研究   总被引:15,自引:2,他引:13  
采用射频反应溅射技术在硅(100)衬底上制备了未掺杂和掺In的ZnO薄膜。掠角X射线衍射测试表明,实验中制备的掺In样品为ZnO薄膜。用X射线衍射仪、原子力显微镜和荧光分光光度计分别对两样品的结构、表面形貌和光致发光特性进行了表征,分析了In掺杂对ZnO薄膜的结构和发光特性的影响。与未掺杂ZnO薄膜相比,掺In ZnO薄膜具有高度的C轴择优取向,同时样品的晶格失配较小,与标准ZnO粉末样品之间的晶格失配仅为0.16%;掺In ZnO薄膜表面平滑,表面最大不平整度为7nm。在掺In样品的光致发光谱中观察到了波长位于415nm和433nm处强的蓝紫光双峰,对掺In样品的蓝紫双峰的发光机理进行了讨论,并推测出该蓝紫双峰来源于In替位杂质和Zn填隙杂质缺陷。  相似文献   

5.
Transparent conductive oxide thin films have been widely investigated in photoelectric devices such as flat panel display (FPD) and solar cells. Al-doped zinc oxide (AZO) thin films have been widely employed in FPD. Measuring the surface roughness of AZO thin films is important before the manufacturing of photoelectric device using AZO thin films because surface roughness of AZO thin films will significantly affect the performance of photoelectric device. Traditional methods to measure surface roughness of AZO thin films are scanning electron microscopy and atomic force microscopy. The disadvantages of these approaches include long lead time and slow measurement speed. To solve this problem, an optical inspection system for rapid measurement of the surface roughness of AZO thin films is developed in this study. It is found that the incident angle of 60° is a good candidate to measure the surface roughness of AZO thin films. Based on the trend equation y=−3.6483x+2.1409, the surface roughness of AZO thin films (y) can be directly deduced from the peak power density (x) using the optical inspection system developed. The maximum measurement-error rate of the optical inspection system developed is less than 8.7%.The saving in inspection time of the surface roughness of AZO thin films is up to 83%.  相似文献   

6.
A PAKDEL  F E GHODSI 《Pramana》2011,76(6):973-983
Zinc oxide nanothin films were prepared on glass substrate by sol–gel dip-coating method using zinc acetate dihydrate, methanol, and monoethanolamine as precursor, solvent, and stabilizer, respectively. The relationship between drying conditions and the characteristics of ZnO nanocrystalline films (c-axis orientation, grain size, roughness and optical properties) was studied. The films were dried in an oven at different temperatures and by IR radiation. Then, the films were annealed at 500°C in a furnace. The chemical composition, transmission spectra, structure, and morphology of the samples were studied using infrared (IR) and UV–visible spectroscopy, X-ray diffraction (XRD), and atomic force microscopy (AFM), respectively. The XRD results show that the drying conditions affect the orientation of crystallization along the (0 0 2) plane. AFM images show that the thicknesses of the films decrease from 128 to 93 nm by changing the drying conditions. The photoluminescence (PL) of ZnO nanothin films shows the UV emission at near band edge and broad green radiation at about 465 nm wavelength.  相似文献   

7.
Zinc oxide (ZnO) thin films on Si (1 1 1) substrates were deposited by pulsed laser ablation of ZnO target at different oxygen pressures. A pulsed Nd:YAG laser with wavelength of 1064 nm was used as laser source. The deposited thin films have been characterized by X-ray diffraction (XRD), Atomic force microscopy (AFM), and Raman spectroscopy. XRD measurements indicate that the ZnO thin films deposited at the oxygen pressure of 1.3 Pa have the best crystalline quality. AFM results show that the surface roughness of ZnO film increases with the increase of oxygen pressure. The Raman results indicate that oxygen ambient plays an important role in removing defects due to excess zinc.  相似文献   

8.
To correlate flat titanium film surface properties with deposition parameters, titanium flat thin films were systematically deposited on glass substrates with various thicknesses and evaporation rates by electron-beam evaporation. The chemical compositions, crystal structure, surface topographies as well as wettability were investigated by using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy (AFM) and water contact angle measurement, respectively. The films consisted mainly of TiO2. Small percentages of Ti2O3 and metallic Ti were also found at the film surface using high-resolution XPS analysis. Quantitative XPS showed little differences regarding elemental compositions among different groups of films. The films were obtained by varying the deposition rate and the film thickness, respectively. XRD data showed consistent reflection patterns of the different titanium samples deposited using different film thicknesses. Without exception measurements of all samples exhibited contact angles of 80° ± 5°. Quantitative AFM characterization demonstrated good correlation tendency between surface roughness and film thickness or evaporation rate, respectively. It is important to notice that titanium films with different sizes of grains on their surfaces but having the same chemistry and film bulk structure can be obtained in a controllable way. By increasing the film thickness and evaporation rate, the surface roughness increased. The surface morphology and grain size growth displayed a corresponding trend. Therefore, the control of these parameters allows us to prepare titanium films with desired surface properties in a controllable and reproducible way for further biological investigations of these materials.  相似文献   

9.
采用热反应法对玻璃衬底上以磁控溅射制备的Zn薄膜进行硫化,制备出ZnS薄膜。薄膜的微观结构、物相结构和表面形貌分别采用正电子湮没技术(PAT)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)进行分析和表征。利用慢正电子湮没多普勒展宽对四个不同硫化温度下得到的ZnS薄膜样品中膜层结构缺陷进行研究,测量了薄膜中的空位型微观缺陷的相对浓度,指出445℃硫化样品中正电子注入能量在1.5~4.5 keV后S参数最小,说明该硫化温度下反应生成的ZnS薄膜结构缺陷浓度最小,膜的致密度最高。XRD结果显示薄膜在445℃以上硫化后,呈(111)择优生长趋势。从扫描电镜的结果也可以看出,在445℃硫化后,薄膜的晶粒明显地变得更大、更致密,这是因为ZnS晶胞比Zn晶胞大以及硫化过程中ZnS固相再结晶的缘故。ZnS thin films have been prepared by sulfurizing zinc thin films deposited on glass substrate by magnetron sputtering for two hours. The microstructure defects, crystallizations and surface morphology of zinc films sulfurized at different temperature were analyzed by PAT (positron annihilation technique), XRD(X-ray diffraction) and SEM (Scanning electron microscopy), respectively. For analyzing the structure defect of four samples with different sulfurization temperature, PAT has been used to obtain the relative concentration of defects. With the positron energy range of 1.5~4.5 keV, the S parameter of ZnS films is minimum. It demonstrates that ZnS films produced at 445℃ have the minimum structural defect concentration and the highest density. XRD results show that films are blende structure with the preference of (111) orientation above 445℃. And from the result of SEM, because of ZnS films recrystallization, the crystal grains obviously become large and dense at 445℃.  相似文献   

10.
Zinc oxide has become an important material for various applications. Commercially available zinc oxide single crystals and as-grown zinc oxide thin films have high surface roughness which has detrimental effects on the growth of subsequent layers and device performance. A chemical mechanical polishing (CMP) process was developed for the polishing of zinc oxide polycrystalline thin films. Highly smooth surfaces with RMS roughness <6 Å (as compared to the initial roughness of 26 ± 6 Å) were obtained under optimized conditions with removal rates as high as 670 Å/min. Effects of various CMP parameters on removal rate and surface roughness were evaluated. The role of pH on the polishing characteristics was investigated in detail.  相似文献   

11.
Nitride coatings have been used to increase hardness and to improve the wear and corrosion resistance of structural materials. Coatings of TiN/ZrN were grown on stainless steel substrates using a physical vapour deposition system assisted by pulsed arc plasma (PAPVD). The coatings have been characterized by X-ray diffraction (XRD) in order to identify the present phases of the films, microstrain level generated, crystallite size and the variation of the lattice parameter. The results showed plane orientations (1 1 1) and (2 0 0) in both TiN and ZrN films. Morphology surface analysis of the samples were performed using a scanning probe microscope to characterize the grain size and roughness in the mode of the atomic force microscopy (AFM) hence it was observed that the root-mean-squared (rms) roughness for ZrN is smaller than for TiN. Besides elastic and friction properties of the films were characterized qualitatively, and then, they were compared with those of the substrates by using force modulation microscopy (FMM) and lateral force microscopy (LFM) modes. In addition, an elemental analysis of the samples was realized by means of energy dispersive spectroscopy (EDS). Both, XRD and AFM results are given as a function of the number of shots. Chemical states of the TiN and ZrN films were determined by X-ray photoelectron spectroscopy (XPS).  相似文献   

12.
运用脉冲激光沉积(PLD)技术在Si(100)基片上沉积了金属Mo薄膜。在激光重复频率2 Hz,能量密度5.2 J/cm2,本底真空10-6 Pa的条件下,研究Mo薄膜的结构和表面形貌,讨论了衬底温度对薄膜形貌与结构的影响。原子力显微镜(AFM)图像和X射线小角衍射(XRD)分析表明,薄膜表面平整、光滑,均方根粗糙度小于2 nm。沉积温度对Mo薄膜结构和表面形貌影响较大,在373~573 K范围内随着温度升高,薄膜粗糙度变小,结晶程度变好。  相似文献   

13.
采用金属有机化学气相沉积法在蓝宝石衬底上制备Ga、P掺杂的ZnO薄膜,分别采用X射线衍射、扫描电子显微镜、霍尔效应测试、光致发光谱对样品进行表征。通过Ga、P掺杂分别得到n、p型ZnO薄膜,n型ZnO薄膜的载流子浓度可以达到1×1019cm-3,p型ZnO薄膜的载流子浓度达到1.66×1016cm-3。所制备的ZnO薄膜具有c轴择优生长取向,并且p型ZnO薄膜具有较好的光致发光特性。  相似文献   

14.
Transparent zinc oxide (ZnO) thin films with a thickness from 10 to 200 nm were prepared by the PLD technique onto silicon and Corning glass substrates at 350 °C, using an Excimer Laser XeCl (308 nm). Surface investigations carried out by atomic force microscopy (AFM) and X-ray diffraction (XRD) revealed a strong influence of thickness on film surface topography. Film roughness (RMS), grain shape and dimensions correlate with film thickness. For the 200 nm thick film, the RMS shows a maximum (13.9 nm) due to the presence of hexagonal shaped nanorods on the surface. XRD measurements proved that the films grown by PLD are c-axis textured. It was demonstrated that the gas sensing characteristics of ZnO films are strongly influenced and may be enhanced significantly by the control of film deposition parameters and surface characteristics, i.e. thickness and RMS, grain shape and dimension.  相似文献   

15.
The surface characteristics of titanium oxide films evaluated by gray level co-occurrence matrices (GLCMs) and entropy are demonstrated experimentally. A PC-based measurement system was set up to detect the interference fringe of optical coating surface as captured by a Fizeau interferometer. Titanium oxide films were prepared by an electron-beam gun evaporation method. The proposed measuring system was used to evaluate the surface flatness of titanium oxide films coated on glass substrates. The variation of entropy in titanium oxide films before and after film deposition was found to be related to the root-mean-square (rms) surface roughness. Surface characteristics of thin films were fast measured by our proposed method and the test results were verified by atomic force microscopy (AFM) and scanning electrical microscopy (SEM).  相似文献   

16.
High quality fluorine-doped tin oxide (SnO2:F) films on glass substrates were been prepared using chemical vapor deposition (CVD) method. The electrical properties, surface morphologies, structural properties and optical properties of the films were studied by varying the freon flow rates. The structure was analyzed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the morphology. Energy-dispersive spectroscopy (EDS) was conducted to understand the surface fluorine composition of the film. The results showed that crystalline structure of the film had a have cassiterite-like diffraction patterns with a preferred orientation of (1 1 0). Surface roughness was evaluated by atomic force microscopy, characterized by root mean square (RMS) and average value (Ra). The SnO2:F resistivity decreased as the freon flow rate increased. The films had a uniform thickness and a transmittance of 80–90% within the visible region of the spectrum.  相似文献   

17.
In this work, thin films of zinc oxide (ZnO) for gas-sensor applications were deposited on platinum coated alumina substrate, using electrostatic spray deposition (ESD) technique. As precursor solution zinc acetate in ethanol was used. Scanning electron microscopy (SEM) evaluation showed a porous and homogeneous film morphology and the energy dispersive X-ray analysis (EDX) confirmed the composition of the films with no presence of other impurities. The microstructure studied with X-ray diffraction (XRD) and Raman spectroscopy indicated that the ZnO oxide films are crystallized in a hexagonal wurtzite phase. The films showed good sensitivity to 1 ppm nitrogen dioxide (NO2) at 300 °C while a much lower sensitivity to 12 ppm hydrogen sulphide (H2S).  相似文献   

18.
Effects of the annealing temperature on structural, optical and surface properties of chemically deposited cadmium zinc sulfide (CdZnS) films were investigated. X-ray diffraction (XRD) results showed that the grown CdZnS thin films formed were polycrystalline with hexagonal structure. Atomic force microscopy (AFM) studies showed that the surface roughness of the CdZnS thin films was about 60-400 nm. Grain sizes of the CdZnS thin films varied between 70 and 300 nm as a function of annealing temperature. The root mean square surface roughness of the selected area, particular point, average roughness profile, topographical area of roughness were measured using the reported AFM software. The band gaps of CdZnS thin films were determined from absorbance measurements in the visible range as 300 nm and 1100 nm, respectively, using Tauc theory.  相似文献   

19.
衬底温度对PLD制备的Mo薄膜结构及表面形貌的影响   总被引:4,自引:1,他引:3       下载免费PDF全文
 运用脉冲激光沉积(PLD)技术在Si(100)基片上沉积了金属Mo薄膜。在激光重复频率2 Hz,能量密度5.2 J/cm2,本底真空10-6 Pa的条件下,研究Mo薄膜的结构和表面形貌,讨论了衬底温度对薄膜形貌与结构的影响。原子力显微镜(AFM)图像和X射线小角衍射(XRD)分析表明,薄膜表面平整、光滑,均方根粗糙度小于2 nm。沉积温度对Mo薄膜结构和表面形貌影响较大,在373~573 K范围内随着温度升高,薄膜粗糙度变小,结晶程度变好。  相似文献   

20.
Zinc oxide (ZnO) and aluminium-doped zinc oxide (ZnO:Al) thin films were prepared by RF diode sputtering at varying deposition conditions. The effects of negative bias voltage and RF power on structural and optical properties were investigated. X-ray diffraction measurements (XRD) confirmed that both un-doped and Al-doped ZnO films are polycrystalline and have hexagonal wurtzite structure. The preferential 〈0 0 1〉 orientation and surface roughness evaluated by AFM measurements showed dependence on applied bias voltage and RF power. The sputtered ZnO and ZnO:Al films had high optical transmittance (>90%) in the wavelength range of 400-800 nm, which was not influenced by bias voltage and RF power. ZnO:Al were conductive and highly transparent. Optical band gap of un-doped and Al-doped ZnO thin films depended on negative bias and RF power and in both cases showed tendency to narrowing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号