首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polydiethylsiloxane-based ferrofluid was prepared by dispersing finely divided magnetic Fe3O4 particles which are modified with oleoyl sarcosine and lauroyl sarcosine. The optimized experiment parameters including molar ratio of surfactant to Fe3O4 (1:5), temperature (80 °C), stirring rate (300 RPM), the surfactant content of lauroyl sarcosine (0 to 33 mol%) and the modification time (25 min) were obtained by the orthogonal test. The magnetic liquid was characterized by a transmission electron microscope (TEM), infrared (IR) spectrometer, X-ray diffractometer (XRD), thermogravimetry (TG), vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). It is indicated that the surfactant is mainly bonded to the surface of Fe3O4 nanoparticles through covalent bond between carboxylate (COO) and Fe atom. The modified magnetic particles are equally dispersed into the carrier and remain stable below −12 °C over 4 months. The ferrofluids exhibit excellent frost resistance property and distinctly reduced temperature coefficient of viscosity compared with polydimethylsiloxane-based ferrofluids and hydrocarbon-based ferrofluids, respectively. The saturation magnetization could reach up to 27.7 emu/g.  相似文献   

2.
The ferrofluid, based on 57Fe isotope enriched Fe3O4 nanoparticles, was synthesized, investigated by Mössbauer spectroscopy method and injected transcranially in the ventricle of the rat brain. The comparison of the Mössbauer spectra of the initial ferrofluid and the rat brain measured in two hours and one week after the transcranial injection allows us to state that the synthesized magnetic 57Fe3O4 nanoparticles undergo intensive biodegradation in live brain and, therefore, they can be regarded as a promising target for a new method of radionuclide-free Mössbauer brachytherapy.  相似文献   

3.
Mn1−xZnxFe2O4 (with x   varying from 0.1 to 0.5) ferrite nanoparticles used for ferrofluid preparation have been prepared by chemical co-precipitation method and characterized. Characterization techniques like elemental analysis by atomic absorption spectroscopy and spectrophotometry, thermal analysis using simultaneous TG-DTA, XRD, TEM, VSM and Mossbauer spectroscopy have been utilized. The final cation contents estimated agree with the initial degree of substitution. The Curie temperature (TcTc) and particle size decrease with the increase in zinc substitution. In the case of particles with higher zinc concentration, both ferrimagnetic nanoparticles and particles exhibiting superparamagnetic behavior at room temperature are present. In addition, some of the results obtained by slightly altering the preparation condition are also discussed. The precipitated particles were used for ferrofluid preparation. The fine particles were suitably dispersed in heptane using oleic acid as the surfactant. The volatile nature of the carrier chosen helps in altering the number concentration of the magnetic particles in a ferrofluid. Magnetic properties of the fine particles and ferrofluids are discussed. Ferrofluids having Mn0.5Zn0.5Fe2O4 particles can be used for the energy conversion application utilizing the magnetically induced convection for thermal dissipation.  相似文献   

4.
Magnetic poly(styrene methyl methacrylate)/Fe3O4 nanospheres with ester groups were prepared by a modified one-step mini-emulsion polymerization in the presence of Fe3O4 ferrofluids. The effects of monomer dose, surfactant content, ferrofluid concentration and initiator content on the particle characteristics such as the size, morphology and magnetic properties were investigated by Fourier-transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis and vibrating sample magnetometer. The results indicated that magnetic nanospheres were superparamagnetic with high saturation magnetization of 51.0 emu/g and corresponding magnetite content of 61.5 wt%. Subsequently, magnetic nanospheres with carboxyl and amino groups were also obtained by hydrolysis and ammonolysis reaction. These magnetic nanospheres with multifunctional groups have biomedical applications.  相似文献   

5.
Bilayer oleic acid-coated Fe3O4 nanoparticles can be applied in more areas than single layer oleic acid-coated ones because they can be well dispersed not only in nonpolar carrier liquids but also in polar carrier liquids, while the single layer oleic acid-coated ones can be dispersed only in nonpolar carrier liquids. Therefore, it is of significance to characterize the surface structure of bilayer and single layer oleic acid-coated Fe3O4 nanoparticles. However, there existed a discrepancy in the characteristic FTIR spectrum of the secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. The goal of this paper was to resolve the discrepancy through using FTIR and TGA together with dispersibility to characterize the surface structure of bilayer and single layer oleic acid-coated Fe3O4 nanoparticles. The results showed that the band at 1710 cm−1 was the characteristic band of the secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. It can be used to distinguish whether the oleic acid-coated Fe3O4 nanoparticles are bilayer or not.  相似文献   

6.
The controlled synthesis of mesoporous silica and metal oxide nanocomposites with a highly ordered porous structure and large specific surface area for specific applications has been an attractive topic in the field of porous materials. Herein, we introduce a novel method for the fabrication of highly ordered mesoporous structured and large specific surface area Fe2O3/SiO2 nanocomposites, and consider their application in room temperature gas sensors. The mesoporous Fe2O3/SiO2 nanocomposites were synthesised by a two-step method, which combines the hydrothermal growth of Fe2O3 nanoparticles and the microemulsion phase of Brij 56 (C16EO10) surfactant as templates in instantly direct-templating synthesis. This synthesis method enables the fabrication of mesoporous Fe2O3/SiO2 nanocomposites without distortion of the ordered porous structure after calcination at high temperature. The synthesised materials were found to be efficient in a room temperature VOC sensor application, with good recovery.  相似文献   

7.
The nanoparticles containing thermosensitive and magnetic properties were investigated for their potential use as a novel drug carrier for targeted and controlled release drug delivery system. These thermosensitive and magnetic nanoparticles were prepared by grafting thermosensitive poly (N-isopropylacrylamide) (PNIPAM) on the surface of silica (SiO2)-coated Fe3O4 nanoparticles with the particle size of 18.8 ± 1.6 nm. Adsorption and desorption behavior of bovine serum albumin (BSA) on the surface of PNIPAM-grafted SiO2/Fe3O4 nanoparticles was studied, and the results indicated that these nanoparticles were able to absorb protein at temperature above the lower critical solution temperature (LCST) and to be desorbed below the LCST. Cytotoxicity studies conducted on Chinese hamster ovary (CHO-K1) cells using methyl tetrazolium (MTT) assays revealed that cell viability of 1 mg/mL PNIPAM-grafted nanoparticles was slightly decreased after 24 h of incubation as compared to the lower concentration of nanoparticles. Furthermore, the concentration of 0.5 mg/mL PNIPAM-grafted nanoparticles was totally biocompatible for 48 h, but had low cytotoxicity after 72 h of incubation. These PNIPAM-grafted nanoparticles did not induce morphological change in their cellularity after exposure for 24 and 108 h. These results demonstrate that PNIPAM-grafted nanoparticles are biocompatible and have potential use as drug carriers.  相似文献   

8.
Colloidal solutions of magnetic nanoparticles were studied as a promising magnetic resonance imaging (MRI) contrast agent. The problem of aggregative stability of solutions is considered. Sol-gel synthesis of magnetite colloidal solutions stabilized by silica is described. Transmittance spectra were measured to analyze sedimentation of nanoparticles in magnetite–silica solutions of different compositions and concentrations. It is shown that the synthesized nanoparticles can be used as MRI contrast agents. The surface morphology and particle size of Fe3O4/SiO2 layers were estimated by atomic force mictroscopy (AFM) technique. The mechanism of magnetic-field-induced aggregation of Fe3O4/SiO2 nanoparticles into chain-like and fractal structures is described.  相似文献   

9.
Fe3O4-based heterostructures, including Fe3O4/MgO/Fe3O4, Fe3O4/MgO/Si and Fe3O4/SiO2/Si, were fabricated by magnetron sputtering to investigate the perpendicular-to-plane magneto-transport properties. In the Fe3O4/MgO/Fe3O4 and Fe3O4/MgO/Si heterostructures, the typical magneto-transport properties of single Fe3O4 films, such as negative magnetoresistance (MR) and extreme values of MR−T curves at 120 K, were observed, suggesting that the spin polarization of conducting electrons conserves through MgO barrier. MR in the Fe3O4/MgO/Fe3O4 heterostructure is larger than that in the Fe3O4/MgO/Si heterostructure, because the spin of electrons is disturbed in the depletion layer of Si and the SiO2 layer introduced by Fe3O4/MgO growth. The Fe3O4/SiO2/Si heterostructure has a positive MR of 2% at 120 K, which may originate from the scattering of conducting electrons in amorphous SiO2 and the spin polarization reversal at the Fe3O4/SiO2 interface.  相似文献   

10.
《Current Applied Physics》2015,15(8):915-919
The structural and magnetic properties of non-coated and SiO2-coated iron oxide (Fe3O4) nanoparticles (NPs) were investigated by a polarized small-angle neutron scattering (P-SANS) method. Measurement of the P-SANS allowed us to obtain nuclear and magnetic scattering cross sections of the NPs under applied magnetic field. The analysis of the scattering intensity provided the structural parameters and the spatial magnetization distribution of the non-coated and the SiO2 coated core–shell NPs. The measured radius of both NPs and the shell thickness of the core–shell NPs were in consistent with those measured by the transmission electron microscopy. In comparison, the magnetic core radii of both NPs were 0.12–0.6 nm smaller than the nuclear radii, indicating the magnetization reduction in the surface region of core Fe3O4 in both NPs. However, the reduced magnetization region, which is the surface spin canting region, of the SiO2-coated NPs was relatively narrower than that of the non-coated NPs. We suggest that the SiO2 coating on the Fe3O4 NPs may stabilize the spin order of atoms and prohibit the oxidation or defect formation at the surface region of the Fe3O4 NPs, and enhance the corresponding magnetization of the Fe3O4 NPs by the reduction of the spin canting layer thickness.  相似文献   

11.
The Verwey transition in Fe3O4 nanoparticles with a mean diameter of 6.3 nm is suppressed after capping the particles with a 3.5 nm thick shell of SiO2. By X‐ray absorption spectroscopy and its associated X‐ray magnetic circular dichroism this suppression can be correlated to localized Fe2+ states and a reduced double exchange visible in different site‐specific magnetization behavior in high magnetic fields. The results are discussed in terms of charge trapping at defects in the Fe3O4/ SiO2 interface and the consequent difficulties in the formation of the common phases of Fe3O4. By comparison to X‐ray absorption spectra of bare Fe3O4 nanoparticles in course of the Verwey transition, particular changes in the spectral shape could be correlated to changes in the number of unoccupied d states for Fe ions at different lattice sites. These findings are supported by density functional theory calculations.  相似文献   

12.
Magnetic nanocomposites can be controlled and tailored to provide the desired mechanical, physical, chemical, and biomedical properties depending on the final applications. The coating of ferrite nanoparticles with polymers affords the possibility of minimizing agglomeration in large-scale commercial synthesis of nanocomposite materials. The process of coating not only provides effective encapsulation of individual nanoparticles, but also controls the growth in size, thus, yielding a better overall size distribution. In this paper, in-situ polymerization of aniline was carried out in different concentration of the ferrofluid with the aim to obtain agglomerate free nanocomposites. The role of the ferrite concentration was investigated by the spectral, morphological, conductivity, and magnetic properties of Fe3O4/polyaniline (PANI) nanocomposites. XRD revealed the presence of spinel phase of Fe3O4 and the particle size was calculated to be 14.3 nm. Spectral analysis confirmed the formation of PANI encapsulated Fe3O4 nanocomposite. Conductivity of the nanocomposites was found to be in the range of 0.001–0.003 S/cm. Higher saturation magnetization of 3.2 emu/g was observed at 300 K, revealing a super paramagnetic behavior of this nanocomposite.  相似文献   

13.
Ferrofluid containing magnetic nanoparticles of Fe3O4 was introduced into the rat brain ventricle via direct transcranial injection. Three months following the injection, the rats were euthanized and their brains investigated by means of histology and Mössbauer spectroscopy. It is demonstrated that the nanoparticles completely decomposed and were cleared from the brain, while the concomitant chemical compound accompanying the ferrofluid synthesis remained intact in the brain.  相似文献   

14.
The production of monodispersed magnetic nanoparticles with appropriate surface modification has attracted increasing attention in biomedical applications including drug delivery, separation, and purification of biomolecules from the matrices. In the present study, we report rapid and room temperature reaction synthesis of gold-coated iron nanoparticles in aqueous solution using the borohydride reduction of HAuCl4 under sonication for the first time. The resulting nanoparticles were characterized with transmission electron microscopy (TEM), electron spectroscopy for chemical analysis (ESCA), ultraviolet visible spectroscopy (UV–Vis), and X-ray diffraction (XRD). Surface charges and magnetic properties of the nanoparticles were also examined. The pattern of Fe3O4 nanoparticles is face centered cubic with an average diameter of 9.5 nm and the initial reduction of gold on the surface of Fe3O4 particles exhibits uniform Fe3O4–Au nanoparticles with an average diameter of 12.5 nm. The saturation magnetization values for the uncoated and gold-coated Fe3O4 nanoparticles were found to be 30 and 4.5 emu/g, respectively, at 300 K. The progression of binding events between boronic acid terminated ligand shell and fructose based on the covalent bonding interaction was measured by absorbance spectral changes. Immunomagnetic separation was also performed at different E. coli concentration to evaluate capturing efficiency of resulting nanoparticles. Immunomagnetic separation percentages were varied in a range of 52.1 and 21.9% depend on the initial bacteria counts.  相似文献   

15.
A simple and reproducible method was developed to synthesize a novel class of Fe3O4/SiO2/dye/SiO2 composite nanoparticles. As promising candidates for use in bioassays, the obtained nanoparticles have an average diameter of 30 nm, and the thickness of the outer shell of silica could be tuned by changing the concentration of the silicon precursor tetraethyl orthosilicate during the synthesis. These multifunctional nanoparticles were found to be highly luminescent, photostable and superparamagnetic. The luminescence intensity of the nanoparticles was increased as the dye concentration was increased in the preparation process. The color of the luminescence was successfully tuned by incorporating different dyes into the nanoparticles. The measurements of the emission spectra indicated that relative to the dye molecules dissolved in ethanol, the emission of the dye-doped nanoparticles exhibited either a red shift or a blue shift, to which a tentative explanation was given.  相似文献   

16.
Fe3O4/polystyrene composite particles were prepared from oleic acid (OA) modified Fe3O4 nanoparticles via miniemulsion polymerization. It was concluded that the surface properties of OA modified magnetite nanoparticles have a great effect on preparation of the composite particles. When Fe3O4 nanoparticles coated by multilayer of OA was employed, there were large amounts of free polystyrene particles in the product. Fe3O4/polystyrene composite particles with defined structure and different magnetite content can be readily prepared from monolayer OA modified Fe3O4 nanoparticles. It was concluded that surface of the monolayer OA modified Fe3O4 nanoparticles is more hydrophobic than that of the multilayer coated ones, thus improving the dispersibility of the Fe3O4 nanoparticles in styrene monomer and allowing preparation of the Fe3O4/polystyrene composite particles with defined structure and controllable magnetite content.  相似文献   

17.
Fe3O4 magnetic nanoparticles (MNPs) were synthesized by the co-precipitation of Fe3+ and Fe2+ with ammonium hydroxide. The sodium citrate-modified Fe3O4 MNPs were prepared under Ar protection and were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). To improve the oxidation resistance of Fe3O4 MNPs, a silica layer was coated onto the modified and unmodified MNPs by the hydrolysis of tetraethoxysilane (TEOS) at 50 °C and pH 9. Afterwards, the silica-coated Fe3O4 core/shell MNPs were modified by oleic acid (OA) and were tested by IR and VSM. IR results revealed that the OA was successfully grafted onto the silica shell. The Fe3O4/SiO2 core/shell MNPs modified by OA were used to prepare water-based ferrofluids (FFs) using PEG as the second layer of surfactants. The properties of FFs were characterized using a UV-vis spectrophotometer, a Gouy magnetic balance, a laser particle size analyzer and a Brookfield LVDV-III+ rheometer.  相似文献   

18.
Co1−xZnxFe2O4 (with x varying from 0 to 0.7) nanoparticles to be used for ferrofluid preparation were prepared by chemical co-precipitation method. The fine particles were suitably dispersed in transformer oil using oleic acid as the surfactant. The magnetization (Ms) and the size of the particles were measured at room temperature. The magnetization (Ms) was found to decrease with the increase in zinc substitution. The magnetic particle size (Dm) of the fluid was found to vary from 11.19 to 4.25 nm decreasing with the increase in zinc substitution.  相似文献   

19.
不使用任何模板一步制得空心Fe3O4纳米颗粒,然后将海藻酸钠嫁接在氨基化的空心Fe3O4表面,再利用海藻酸盐与钙离子的作用,在空心Fe3O4表面形成一个凝胶化层,制得海藻酸盐凝胶化的空心Fe3O4纳米颗粒,粒径约为400~500 nm.采用TEM、XRD、XPS、VSM等手段对纳米微球进行表征.VSM表征结果表明在室温下样品磁性材料为超顺磁性.改性Fe3O4纳米颗粒成功地用于柔红霉素的载负和缓释,最大载负率和载药量分别为28.4%和14.2%.缓释结果表明,海藻酸盐凝胶化层的存在,能更有效控制柔红霉素缓慢地释放.  相似文献   

20.
Behavior of transition metal oxide (TMO) nanoparticles (Fe3O4, NiO, Co3O4, and Mn3O4) inserted in ion tracks has been studied in the presence of magnetic field. The special structure of ion tracks in dielectric layer on semiconductors is known as TEMPOS—‘Tunable Electronic Materials with Pores in Oxide on Silicon’. TEMPOS structure offers a high surface to volume ratio resulting in fast response time and high sensitivity of sensors fabricated by inserting suitable materials in the ion tracks. We have already reported the behavior of ferrofluids (aqueous and non-aqueous) inserted in the TEMPOS structures and its feasibility as earth’s magnetic field sensor. In continuation to this study, a comparative study between different transition metal oxides inserted in the ion tracks is being presented here with an aim to understand their response in confined geometry. This study shows that Fe3O4 (ferrofluid) is the best choice for ion track-based magnetic field sensor as compared to NiO, Co3O4, and Mn3O4. Its response to magnetic field can be tailored by the dilution of the ferrofluid and annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号