首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Energy fluence, defined as pulse energy over irradiated area, is a key parameter of pulsed laser processing. Nevertheless, most of the authors using this term routinely do not realize the problems related to the accurate measurement of the spot size. In the present paper we are aiming to approach this problem by ablating crystalline Si wafers with pulses of a commercial KrF excimer laser (λ = 248 nm, τ = 15 ns) both in vacuum and at ambient atmosphere. For any pulse energy, the size of the ablated area monotonously increases with increasing number of pulses. The difference in the ablated area could be as high as a factor of three when 2000 consecutive pulses impinge on the surface. The existence and extent of the gradual lowering of multi-pulse ablation threshold queries the applicability of routinely used procedure of dividing the pulse energy with the size of the ablated area exposed into either carbon-paper or a piece of Si with one or a few pulses when determining the fluence. A more quantitative way is proposed allowing comparison of results originating from different laboratories.  相似文献   

2.
The effect of fluence and pulse duration on the growth of nanostructures on chromium (Cr) surfaces has been investigated upon irradiation of femtosecond (fs) laser pulses in a liquid confined environment of ethanol. In order to explore the effect of fluence, targets were exposed to 1000 pulses at various peak fluences ranging from 4.7 to 11.8?J?cm–2 for pulse duration of ~25?fs. In order to explore the effect of pulse duration, targets were exposed to fs laser pulses of various pulse durations ranging from 25 to 100?fs, for a constant fluence of 11.8?J?cm–2. Surface morphology and structural transformations have been analyzed by scanning electron microscopy and Raman spectroscopy, respectively. After laser irradiation, disordered sputtered surface with intense melting and cracking is obtained at the central ablated areas, which are augmented with increasing laser fluence due to enhanced thermal effects. At the peripheral ablated areas, where local fluence is approximately in the range of 1.4–4?mJ?cm–2, very well-defined laser-induced periodic surface structures (LIPSS) with periodicity ranging from 270 to 370?nm along with dot-like structures are formed. As far as the pulse duration is concerned, a significant effect on the surface modification of Cr has been revealed. In the central ablated areas, for the shortest pulse duration (25?fs), only melting has been observed. However, LIPSS with dot-like structures and droplets have been grown for longer pulse durations. The periodicity of LIPSS increases and density of dot-like structures decreases with increasing pulse duration. The chemical and structural modifications of irradiated Cr have been revealed by Raman spectroscopy. It confirms the formation of new bands of chromium oxides and enol complexes or Cr-carbonyl compounds. The peak intensities of identified bands are dependent upon laser fluence and pulse duration.  相似文献   

3.
Laser fluence, repetition rate and pulse duration effects on paint ablation   总被引:1,自引:0,他引:1  
The efficiency (mm3/(J pulse)) of laser ablation of paint was investigated with nanosecond pulsed Nd:YAG lasers (λ = 532 nm) as a function of the following laser beam parameters: pulse repetition rate (1-10,000 Hz), laser fluence (0.1-5 J/cm2) and pulse duration (5 ns and 100 ns). In our study, the best ablation efficiency (η ≅ 0.3 mm3/J) was obtained with the highest repetition rate (10 kHz) at the fluence F = 1.5 J/cm2. This ablation efficiency can be associated with heat accumulation at high repetition rate, which leads to the ablation threshold decrease. Despite the low thermal diffusivity and the low optical absorption of the paint (thermal confinement regime), the ablation threshold fluence was found to depend on the pulse duration. At high laser fluence, the ablation efficiency was lower for 5 ns pulse duration than for the one of 100 ns. This difference in efficiency is probably due to a high absorption of the laser beam by the ejected matter or the plasma at high laser intensity. Accumulation of particles at high repetition rate laser ablation and surface shielding was studied by high speed imaging.  相似文献   

4.
Time-resolved photography was employed to study plasma dynamics and particle ejection of laser-irradiated iron oxide materials. Nano-particle powder, pressed powder pellets and sintered ceramics were ablated in air and Ar gas background by means of short laser pulses (Nd:YAG laser wavelength λ = 1064 nm and pulse duration τL ≈ 6 ns; KrF laser λ = 248 nm and τL ≈ 20 ns). Plasma plume dynamics significantly depended on sample morphology. The ejection of non-luminous particles up to several hundreds of microseconds after the laser pulse was observed for powder and pressed powder target materials. Laser-induced breakdown spectroscopy (LIBS) was employed for element analysis of iron oxide powders, pressed pellets and sintered ceramics. LIBS spectra of the different targets were comparable to each other and qualitatively independent of target morphology.  相似文献   

5.
The study of the laser pulse duration effect on the silicon micro-spikes morphology is presented. The microcones were produced by ultraviolet (248 nm) laser irradiation of doped Si wafers in SF6 environment. The laser pulse duration was adjusted at 450 fs, 5 ps and 15 ns. We have analyzed the statistical nature of the spikes’ morphological characteristics, such as periodicity and apex angle by exploiting image processing techniques, on SEM images of the irradiated samples. The correlation of the quantitative morphological characteristics with the laser parameters (pulse duration, laser fluence and number of pulses) provides new insight on the physical mechanisms, which are involved on the formation of Si microcones.  相似文献   

6.
This paper presents part of the larger study on microstructural features of mortars and it's effects on laser cleaning process. It focuses on the influence of surface roughness, porosity and moisture content of mortars on the removal of graffiti by Nd:YAG laser. The properties of this laser are as follows: wavelength (λ) 1.06 μm, energy: 500 mJ per pulse, pulse duration: 10 ns. The investigation shows that the variation of laser fluence with the number of pulses required for the laser cleaning can be divided into two zones, namely effective zone and ineffective zone. There is a linear relationship observed between number of pulses required for laser cleaning and the laser fluence in the effective zone, while the number of pulses required for the laser cleaning is almost constant even though the laser fluence increases in the ineffective zone. Moreover, surface roughness, porosity and moisture content of mortar samples have influence on the laser cleaning process. The effect of these parameters become however negligible at the high level of laser fluence. The number of pulses required for the laser cleaning is low for smooth surface or less porous mortar. Furthermore, the wetness of the samples facilitates the cleaning process.  相似文献   

7.
The laser-induced backside etching of fused silica with gallium as highly absorbing backside absorber using pulsed infrared Nd:YAG laser radiation is demonstrated for the first time. The influence of the laser fluence, the pulse number, and the pulse length on the etch rate and the etched surface topography was studied. The comparable high threshold fluences of about 3 and 7 J/cm2 for 18 and 73 ns pulses, respectively, are caused by the high reflectivity of the fused silica-gallium interface and the high thermal conductivity of gallium. For the 18 and 73 ns long pulses the etch rate rises almost linearly with the laser fluence and reaches a value of 350 and 300 nm/pulse at a laser fluence of about 12 and 28 J/cm2, respectively. Incubation processes are almost absent because etching is already observed with the first laser pulse at all etch conditions and the etch rate is constant up to 30 pulses.The etched grooves are Gaussian-curved and show well-defined edges and a smooth bottom. The roughness measured by interference microscopy was 1.5 nm rms at an etch depth of 0.6 μm. The laser-induced backside etching with gallium is a promising approach for the industrial application of the backside etching technique with IR Nd:YAG laser.  相似文献   

8.
We report the first successful deposition of type II cryoglobulin blood protein thin films by matrix assisted pulsed laser evaporation (MAPLE) using a KrF* excimer laser source (λ = 248 nm, τFWHM ≈ 20 ns) operated at a repetition rate of 10 Hz. We demonstrate by AFM and FTIR that MAPLE-deposited thin films consist of starting type II cryoglobulin only, maintaining its chemical structure and biological functionality, being properly collected and processed. The dependence on incident laser fluence of the induced surface morphology is presented. The presence of type II cryoglobulin was revealed as aggregates of globular material in the MAPLE-deposited thin films and confirmed by standard cryoglobulin tests.  相似文献   

9.
Laser heating and ablation of materials with low absorption and thermal conductivity (paint and cement) were under experimental and theoretical investigations. The experiments were made with a high repetition rate Q-switched Nd:YAG laser (10 kHz, 90 ns pulse duration and λ = 532 nm). High repetition rate laser heating resulted in pulse per pulse heat accumulation. A theoretical model of laser heating was developed and demonstrated a good agreement between the experimental temperatures measured with the infrared pyrometer and the calculated ones. With the fixed wavelength and laser pulse duration, the ablation threshold fluence of paint was found to depend on the repetition rate and the number of applied pulses. With a high repetition rate, the threshold fluence decreased significantly when the number of applied pulses was increasing. The experimentally obtained thresholds were well described by the developed theoretical model. Some specific features of paint heating and ablation with high repetition rate lasers are discussed.  相似文献   

10.
Nanostructures formed by Au nanoparticles on ZnO thin film surface are of interest for applications which include medical implants, gas-sensors, and catalytic systems. A frequency tripled Nd:YAG laser (λ = 355 nm, τFWHM ∼ 10 ns) was used for the successive irradiation of the Zn and Au targets. The ZnO films were synthesized in 20 Pa oxygen pressure while the subsequent Au coverage was grown in vacuum. The obtained structures surface morphology, crystalline quality, and chemical composition depth profile were investigated by acoustic (dynamic) mode atomic force microscopy, X-ray diffraction, and wavelength dispersive X-ray spectroscopy. The surface is characterized by a granular morphology, with average grain diameters of a few tens of nanometers. The surface roughness decreases with the increase of the number of laser pulses applied for the irradiation of the Au target. The Au coverage reveals a predominant (1 1 1) texture, whereas the underlying ZnO films are c-axis oriented. A linear dependence was established between the thickness of the Au coverage and the number of laser pulses applied for the irradiation of the Au target.  相似文献   

11.
Modifications in thin metal films under intensive laser irradiation were studied. Gold, silver, copper, chromium and aluminum films with the thickness of 100 nm were deposited on the glass substrate. Back-side irradiation through the substrate with a burst of nanosecond pulses tightly focused to a line was applied. The film removal threshold with a single pulse Fth was estimated for every material and laser fluence was kept above it in the range of 1.5-3 Fth during experiments. Diverse behavior of the films depending on the metal, the shift between pulses and laser fluence was observed. In chromium, the regular structures were developed in a quite wide range of processing parameters. In gold, three kinds of ripples were observed: transverse (similar to ripples in chromium), longitudinal and a structure of ripples oriented at 60° to each other. The combination of physical properties facilitated the regular assembly of the molten metal in chromium and to some extent in gold.  相似文献   

12.
We report the successful deposition of polycaprolactone polymer by MAPLE using a KrF* excimer laser (λ = 248 nm, τ = 7 ns). According to FTIR spectra the deposited films have similar chemical structure to the dropcast material. The fluence plays a key role in optimizing the performances of MAPLE-synthesized polycaprolactone structures. We demonstrated that MAPLE allows for controlling the morphology of films to the level required in targeted drug delivery of pharmacologic agents.  相似文献   

13.
Femtosecond surface structure modifications are investigated under irradiation with laser pulses of 150 fs at 800 nm, on copper and silicon. We report sub-wavelength periodic structures formation (ripples) with a periodicity of 500 nm for both materials. These ripples are perpendicular to the laser polarization and can be obtained with only one pulse. The formation of these ripples corresponds to a fluence threshold of 1 J/cm2 for copper and 0.15 J/cm2 for silicon. We find several morphologies when more pulses are applied: larger ripples parallel to the polarization are formed with a periodicity of 1 μm and degenerate into a worm-like morphology with a higher number of pulses. In addition, walls of deep holes also show sub-wavelength and large ripples.  相似文献   

14.
TiO2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm2. Microcracks at medium laser fluence of 1000 mJ/cm2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm2. The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO2 film might be used for adjustable filters.  相似文献   

15.
A series of 550 nm spacing gratings were fabricated in fused silica by laser induced backside wet etching (LIBWE) method using the fourth harmonic of a Q-switched Nd:YAG laser (wavelength: λ = 266 nm; pulse duration: FWHM = 10 ns). During these experiments we used a traditional two-beam interference method: the spatially filtered laser beam was split into two parts, which were interfered at a certain incident angle (2θ = 28°) on the backside surface of the fused silica plate contacting with the liquid absorber (saturated solution of naphthalene-methyl-methacrylate c = 1.85 mol/dm3). We studied the dependence of the quality and the modulation depth of the prepared gratings on the applied laser fluence and the number of laser pulses. The surface of the etched gratings was characterized by atomic force microscope (AFM). The maximum modulation depth was found to be 180-200 nm. Our results proved that the LIBWE procedure is suitable for production of submicrometer sized structures in transparent materials.  相似文献   

16.
The effect of laser ablation on copper foil irradiated by a short 30 ns laser pulse was investigated by X-ray photoelectron spectroscopy. The laser fluence was varied from 8 to 16.5 J/cm2 and the velocity of the laser beam from 10 to 100 mm/s. This range of laser fluence is characterized by a different intensity of laser ablation. The experiments were done in two kinds of ambient atmosphere: air and argon jet gas.The chemical state and composition of the irradiated copper surface were determined using the modified Auger parameter (α′) and O/Cu intensity ratio. The ablation atmosphere was found to influence the size and chemical state of the copper particles deposited from the vapor plume. During irradiation in air atmosphere the copper nanoparticles react with oxygen and water vapor from the air and are deposited in the form of a CuO and Cu(OH)2 thin film. In argon atmosphere the processed copper surface is oxidized after exposure to air.  相似文献   

17.
We report the first successful deposition of triacetate-pullulan polysaccharide thin films by matrix assisted pulsed laser evaporation. We used a KrF* excimer laser source (λ = 248 nm, τ ≈ 20 ns) operated at a repetition rate of 10 Hz. We demonstrated by FTIR that our thin films are composed of triacetate-pullulan maintaining its chemical structure and functionality. The dependence on incident laser fluence of the induced surface morphology is analysed.  相似文献   

18.
The influence of pulse duration on the laser-induced damage in undoped or infrared-absorbing-dye doped thin triazenepolymer films on glass substrates has been investigated for single, near-infrared (800 nm) Ti:sapphire laser pulses with durations ranging from 130 fs up to 540 fs and complementarily for infrared (1064 nm) Nd:YAG ns-laser single-pulse irradiation. The triazenepolymer material has been developed for high resolution ablation with irradiation at 308 nm. Post-irradiation optical microscopy observations have been used to determine quantitatively the threshold fluence for permanent laser damage. In contrast to our previous studies on a triazenepolymer with different composition [J. Bonse, S.M. Wiggins, J. Solis, T. Lippert, Appl. Surf. Sci. 247 (2005) 440], a significant dependence of the damage threshold on the pulse duration is found in the sub-picosecond regime with values ranging from ∼500 mJ/cm2 (130 fs) up to ∼1500 mJ/cm2 (540 fs). Other parameters such as the film thickness (50 nm and 1.1 μm samples) or the doping level show no significant influence on the material behavior upon irradiation. The results for fs- and ns-laser pulse irradiation are compared and analyzed in terms of existent ablation models.  相似文献   

19.
The effectiveness of the laser induced backside wet etching (LIBWE) of fused silica produced by subpicosecond (600 fs) and nanosecond (30 ns) KrF excimer laser pulses (248 nm) was studied. Fused silica plates were the transparent targets, and naphthalene-methyl-methacrylate (c = 0.85, 1.71 M) and pyrene-acetone (c = 0.4 M) solutions were used as liquid absorbents. We did not observe etching using 600 fs laser pulses, in contrast with the experiments at 30 ns, where etched holes were found. The threshold fluences of the LIBWE at nanosecond pulses were found to be in the range of 360-450 mJ cm−2 depending on the liquid absorbers and their concentrations. On the basis of the earlier results the LIBWE procedure can be explain by the thermal heating of the quartz target and the high-pressure bubble formation in the liquid. According to the theories, these bubbles hit and damage the fused silica surface. The pressure on the irradiated quartz can be derived from the snapshots of the originating and expanding bubbles recorded by fast photographic setup. We found that the bubble pressure at 460 mJ cm−2 fluence value was independent of the pulse duration (600 fs and 30 ns) using pyrene-acetone solution, while using naphthalene-methyl-methacrylate solutions this pressure was 4, 5 times higher at 30 ns pulses than it was at 600 fs pulses. According to the earlier studies, this result refers to that the pressure should be sufficiently high to remove a thin layer from the quartz surface using pyrene-acetone solution. These facts show that the thermal and chemical phenomena in addition to the mechanical effects also play important role in the LIBWE procedure.  相似文献   

20.
Pulsed laser ablation of Ag and Au targets, immersed in double-distilled water is used to synthesize metallic nanoparticles (NPs). The targets are irradiated for 20 min by laser pulses at different wavelengths—the fundamental and the second harmonic (SHG) (λ = 1064 and 532 nm, respectively) of a Nd:YAG laser system. The ablation process is performed at a repetition rate of 10 Hz and with pulse duration of 15 ns. Two boundary values of the laser fluence for each wavelength under the experimental conditions chosen were used—it varied from several J/cm2 to tens of J/cm2. Only as-prepared samples were measured not later than two hours after fabrication. The NPs shape and size distribution were evaluated from transmission electron microscopy (TEM) images. The suspensions obtained were investigated by optical transmission spectroscopy in the near UV and in the visible region in order to get information about these parameters. Spherical shape of the NPs at the low laser fluence and appearance of aggregation and building of nanowires at the SHG and high laser fluence was seen. Dependence of the mean particle size at the SHG on the laser fluence was established. Comments on the results obtained have been also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号