首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Titanium dioxide photocatalysts co-doped with iron (III) and lanthanum were prepared by a facile sol-gel method. The structure of catalysts was characterized by X-ray diffraction (XRD), Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the samples were evaluated by the degradation of methylene blue in aqueous solutions under visible light (λ > 420 nm) and UV light irradiation. Doping with Fe3+ results in a lower anatase to rutile (A-R) phase transformation temperature for TiO2 particles, while doping with La3+ inhibits the A-R phase transformation, and co-doping samples indicate that Fe3+ partly counteracts the effect of La3+ on the A-R transformation property of TiO2. Fe-TiO2 has a long tail extending up the absorption edges to 600 nm, whereas La-TiO2 results in a red shift of the absorption. However, Fe and La have synergistic effect in the absorption of TiO2. Compared with Fe3+ and La3+ singly doped TiO2, the co-doped simple exhibits excellent visible light and UV light activity and the synergistic effect of Fe3+ and La3+ is responsible for improving the photocatalytic activity.  相似文献   

2.
Nitrogen and ferrum co-doped titania photocatalyst was prepared by the sol-gel route. The prepared photocatalyst was characterized by various techniques including X-ray diffraction (XRD), UV-vis diffusive reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and N2 adsorption-desorption isotherm. The photocatalytic activity of the co-doped titania photocatalyst was evaluated by the degradation of methyl orange (MO) from aqueous solution under visible light irradiation and was compared with that of the commercial TiO2 photocatalyst (Degussa P25). The results revealed that the nitrogen doping could lead to the response to visible light and that the ferrum doping could improve the photocatalytic performance. The effects of the component and the annealing temperature of the co-doped titania photocatalyst on the photocatalytic activity were investigated.  相似文献   

3.
王庆宝  张仲  徐锡金  吕英波  张芹 《物理学报》2015,64(1):17101-017101
采用基于密度泛函理论(DFT)的平面波超软赝势方法(PWPP), 利用Material studio 计算N, Fe, La三种元素掺杂引起的锐钛矿TiO2晶体结构、能带结构和态密度变化. 并通过溶胶-凝胶法制得锐钛矿型本征TiO2, N, Fe共掺杂TiO2和N, Fe, La共掺杂TiO2; 用X射线衍射和扫描电镜表征结构; 紫外-可见分光光度计检测TiO2对甲基橙的降解效率变化. 计算结果表明, 由于N, Fe, La三掺杂TiO2的晶格体积、键长等发生变化, 导致晶体对称性下降, 光生电子-空穴对有效分离, 同时在导带底和价带顶形成杂质能级, TiO2禁带宽度由1.78 eV变为1.35 eV, 减小25%, 光吸收带边红移, 态密度数增加, 电子跃迁概率提升, 光催化能力增加. 实验结果表明: 离子掺杂使颗粒变小, 粒径大小: 本征TiO2>N/Fe_TiO2>N/Fe/La_TiO2, 并测得N/Fe/La_TiO2发光峰425 nm, 能隙减小, 光催化能力比N/Fe_TiO2强, 增强原因是杂质能级和电子态数量增加引起.  相似文献   

4.
Activated carbon (AC) supported Zn2+–TiO2 photocatalyst was prepared by sol–gel method. The prepared samples were characterized by X-ray diffraction, scanning electron micrograph, nitrogen absorption, diffuse reflectance UV/VIS and X-ray photoelectron spectroscopy. Using toluene as a pollution target, the photocatalytic activity of photocatalyst was evaluated. The results showed that prepared photocatalyst was obviously helpful for the removal of toluene in air. The photocatalytic degradation of toluene by Zn2+–TiO2/AC reached 100% for 40 min and remained 75% after 160 min, while degradation by TiO2 was only 30%. It indicated that the photocatalytic activity of prepared photocatalyst was enhanced. It is due to Zn2+-doping increased the oxidation and reduction of hole–electron pairs, which was the important factor in heterogeneous photocatalysis.  相似文献   

5.
以葡聚糖为模板,钛酸四正丁酯、硝酸铁和硝酸镧为前驱体采用模板法制备了一系列铁、镧单掺杂及共掺杂纳米TiO2光催化剂. 利用SEM、XRD、BET比表面积测定和UV-Vis等技术对其形貌、晶体结构及表面结构、光吸收特性等进行了表征. 以甲基橙溶液的光催化降解为模型反应,考察了不同掺杂的样品在紫外和可见光下的光催化性能. TiO2材料具有较大的比表面积(约150 m2/g),铁和镧共掺杂纳米TiO2在可见光区域有较强的吸收,在紫外和可见光条件下较纯TiO2和单掺杂TiO2对甲基橙溶液具有更好的光催化降解效果,且铁和镧的掺杂量显著影响该材料的催化性能. 当铁掺杂量为0.5mol%、镧掺杂量为0.3mol%,在500 ℃焙烧2 h所得光催化材料的催化性能最佳,焙烧4 h即可使甲基橙的降解率达98.8%,且该复合材料有较高的循环回收利用率,重复使用4次仍可使甲基橙的降解率保持在88%以上.  相似文献   

6.
Semiconductor loaded mesoporous materials in general possess greater photocatalytic activity than pure semiconductors. Hence, with an attempt to achieve higher photocatalytic activity, Ag2S/MCM-41 photocatalysts were prepared by ion exchange method and used for the photocatalytic degradation of methylene blue. The materials were characterized by different analytical techniques such as transmission electron microscopy (TEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and BET (Brunauer-Emmert-Teller) experiments. The effect of Ag2S, MCM-41 support and different wt% of Ag2S over the support on the photocatalytic degradation and influence of parameters such as Ag2S loading, catalyst a mount, pH and initial concentration of dye on degradation are evaluated. The degradation reaction follows pseudo-first order kinetics. It was seen that 0.6 g/L of photocatalyst is an optimum value for the dosage of photocatalyst. The degradation efficiency was decreased in dye concentration above 3.2 ppm for dye.  相似文献   

7.
《Current Applied Physics》2018,18(6):737-743
Electron-hole separation and a narrow band-gap are essential steps to obtain efficient photocatalysis, towards which the use of co-catalysts or co-doped-TiO2 photocatalysts has become a widely used strategy. In this article, the combination of MoS2 and co-doping of V, N is the goal to achieve high performance photocatalysts. We synthesized MoS2/V, N co-doped TiO2 heterostructure thin film by sol-gel and chemical bath deposition methods. Herein, we investigated the influence of deposition time of MoS2 layer on visible-photocatalytic activity of the obtained samples. The thin films were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis spectroscopy techniques. Visible-photocatalytic activity of these samples were evaluated on the removal of methylene blue (MB) under visible light irradiation. The results show that the aforementioned heterostructure thin films have better photocatalytic activities than those of TiO2, MoS2 and V, N co-doped TiO2 counterparts in visible light region. The mechanism for increasing visible-photocatalytic property of the heterostructure thin films is discussed in detail. We find that MoS2/V, N co-doped TiO2 heterostructure thin film at MoS2 deposition time of 45-min shows the highest photocatalytic performance in the visible light region with MB photodegradation rate about 99% for 150 min and the degradation rate constant is 2.06 times higher than that of V and N co-doped TiO2 counterpart.  相似文献   

8.
Trititanate nanotubes were prepared using hydrothermal method and then co-doped with Gd3+ and N through ion-exchanging with H+. They were characterized by X-ray photoelectron spectra (XPS), high-resolution transmission electronmicroscopy (HRTEM), X-ray diffraction (XRD), UV-vis diffusion reflection spectra (UV-vis DRS) and photoluminescence (PL) spectra. The photocatalytic activities were investigated with Rhodamine B as the model pollutant. The results indicated that synergistic reaction occurred when codoping with Gd3+ and N and the photocatalytic activities of TiO2 were enhanced significantly under visible light irradiation.  相似文献   

9.
Natural zeolite supported Fe3+-TiO2 photocatalysts were synthesized for the sake of improving the recovery and photocatalytic efficiency of TiO2. The as-prepared materials were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). Methyl orange was used to estimate the photocatalytic activity of the samples. The results showed that zeolite inhibited the growth of TiO2 crystallite sizes. The Fe3+ concentration played an important role on the microstructure and photocatalytic activity of the samples. The iron ions could diffuse into TiO2 lattice to the form Fe-O-Ti bond and gave TiO2 the capacity to absorb light at lower energy levels. The photocatalytic activity of the samples could be enhanced as appropriate dosages of Fe3+ were doped.  相似文献   

10.
Titanium isopropoxide, ammonium carbonate and nickelous nitrate were used as the sources of titanium, nitrogen, and nickel to prepare titania photocatalyst co-doped with nitrogen and nickel by means of the modified sol-gel method. The photocatalyst was characterized by X-ray diffraction (XRD), UV-vis diffusive reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM). The prepared N-Ni co-doped photocatalyst showed optical absorption in the visible light area and exhibited excellent photocatalytic ability for the degradation of formaldehyde under visible light irradiation. The effects of annealing temperature and component on the phase composition and photocatalytic activity were investigated. The results demonstrated that nitrogen atoms was weaved into the structure of titania and led to the response to visible light. However, nickel atoms existed in the form of Ni2O3, dispersed on the surface of TiO2, suppressed the recombination of photo-induced electron-hole pairs, raised the photo quantum efficiency, and led to the enhancement of photocatalytic performance. The increase of photoactivity was attributed to the synergistic effects of co-doping.  相似文献   

11.
ABSTRACT

Rb+-doped TiO2 nanoparticles with higher photocatalytic activity were prepared by sol–gel method. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), and surface area (BET) measurements. The photocatalytic activity for the degradation of rhodamine B (RhB) was evaluated. The effects of calcination temperature, Rb+-doping amount, and the dosage of catalyst in the reaction liquid were investigated. The results showed that Rb+ doping can inhibit phase transformation from anatase to rutile, increase surface area of TiO2 crystals, and reduce crystallite size. TiO2 doped with 1% Rb+ and calcined at 650°C shows much higher photoactivity than the others when the doping level of Rb+ and calcination temperature are 0–5% and 350–850°C, respectively. The kinetics of the degradation of RhB was also analyzed. The kinetics of this reaction fits the pseudo first-order kinetics model well, and the reaction rate constants for pure TiO2 and Rb1-650 are 0.086 min?1 and 0.226 min?1 respectively. Doping with Rb+ improves the photocatalytic activity of TiO2 significantly.  相似文献   

12.
Multiwalled carbon nanotube (MWCNT/N), Pd co-doped TiO2 nanocomposites were prepared by calcining the hydrolysis products of the reaction of titanium isopropoxide, Ti(OC3H7)4 containing multiwalled carbon nanotubes with aqueous ammonia. The prepared samples were characterised by Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, diffuse reflectance UV?CVis spectrophotometry (DRUV?CVis), XRD, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). DRUV?CVis analysis confirmed the red shift in the absorption edge at lower MWCNT percentages. SEM and TEM images showed the complete coverage of the MWCNTs with clusters of anatase TiO2 at low MWCNT percentages. Higher MWCNT levels led to their aggregation and consequently poor coverage by N, Pd co-doped TiO2. The photocatalytic activities of the nanocomposites were monitored by photodegradation of Eosin Yellow under simulated solar and visible light irradiation (???>?450?nm). Irradiation with simulated solar radiation gave higher dye-degradation rates compared to visible radiation. The optimum MWCNT weight percentage in the composites was found to be 0.5. High degradation-rate constants of 3.42?×?10?2 and 5.18?×?10?3?min?1 were realised for the 0.5% MWCNT/N, Pd co-doped TiO2 composite, using simulated solar light and visible light, respectively.  相似文献   

13.
Praseodymium and nitrogen co-doped titania (Pr/N-TiO2) photocatalysts, which could degrade Bisphenol A (BPA) under visible light irradiation, were prepared by the modified sol-gel process. Tetrabutyl titanate, urea and praseodymium nitrate were used as the sources of titanium, nitrogen and praseodymium, respectively. The resulting materials were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-vis absorbance spectroscopy, X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption isotherm and Fourier transform infrared spectra (FTIR). It was found that Pr doping inhibited the growth of crystalline size and the transformation from anatase to rutile. The degradation of BPA under visible light illumination was taken as probe reaction to evaluate the photo-activity of the co-doped photocatalyst. In our experiments, the optimal dopant amount of Pr was 1.2 mol% and the calcination temperature was 500 °C for the best photocatalytic activity. Pr/N-TiO2 samples exhibited enhanced visible-light photocatalytic activity compared to N-TiO2, undoped TiO2 and commercial P25. The nitrogen atoms were incorporated into the crystal of titania and could narrow the band gap energy. Pr doping could slow the radiative recombination of photogenerated electrons and holes in TiO2. The improvement of photocatalytic activity was ascribed to the synergistic effects of nitrogen and Pr co-doping.  相似文献   

14.
The present work deals with the synthesis of titanium dioxide nanoparticles doped with Fe and Ce using sonochemical approach and its comparison with the conventional doping method. The prepared samples have been characterized using X-ray diffraction (XRD), FTIR, transmission electron microscopy (TEM) and UV–visible spectra (UV–vis). The effectiveness of the synthesized catalyst for the photocatalytic degradation of crystal violet dye has also been investigated considering crystal violet degradation as the model reaction. It has been observed that the catalysts prepared by sonochemical method exhibit higher photocatalytic activity as compared to the catalysts prepared by the conventional methods. Also the Ce-doped TiO2 exhibits maximum photocatalytic activity followed by Fe-doped TiO2 and the least activity was observed for only TiO2. The presence of Fe and Ce in the TiO2 structure results in a significant absorption shift towards the visible region. Detailed investigations on the degradation indicated that an optimal dosage with 0.8 mol% doping of Ce and 1.2 mol% doping of Fe in TiO2 results in higher extents of degradation. Kinetic studies also established that the photocatalytic degradation followed the pseudo first-order reaction kinetics. Overall it has been established that ultrasound assisted synthesis of doped photocatalyst significantly enhances the photocatalytic activity.  相似文献   

15.
In this work, we report the synthesis of nickel titanate nanoparticles loaded on nanomesoporous MCM-41 nanoparticles to determine the effect of MCM-41 nanoparticles on the photocatalytic activities of nickel titanate (NiTiO3) nanoparticles by using simple solid-state dispersion (SSD) method. Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and UV–Vis diffuse reflectance spectra (DRS) analysis were used to characterize the size and morphology of the obtained nanocomposite. The photocatalytic activity (PA) of the as-prepared NiTiO3 loaded on MCM-41 was evaluated by degradation of the methylene blue under irradiation of UV and visible light. The results showed that NiTiO3 loaded on nanosize MCM-41 has higher photocatalytic activity than that of NiTiO3 nanoparticles.  相似文献   

16.
A series of nanocomposites of poly(3-hexylthiophene) with Fe N-doped TiO2 (P3HT/Fe N/TiO2) were synthesized by the chemical method in situ. The structure of the prepared composites was characterized using X-ray diffraction patterns (XRD), infrared spectroscopy (IR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Optical and electrochemical properties were determined using UV-vis spectroscopy, fluorescence spectroscopy, and cyclic voltammetry. These tests indicated that P3HT/Fe N/TiO2 is a new p-n semiconductor. Two solar cells based on P3HT/Fe N/TiO2 were manufactured and studied.  相似文献   

17.
In this research, Fe-doped TiO2 nanoparticles with various Fe concentrations (0. 0.1, 1, 5 and 10 wt%) were prepared by a sol–gel method. Then, nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray analysis (EDX), BET surface area, photoluminescence (PL) spectroscopy and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity of the nano-particles was evaluated through degradation of reactive red 198 (RR 198) under UV and visible light irradiations. XRD results revealed that all samples contained only anatase phase. DRS showed that the Fe doping in the titania induced a significant red shift of the absorption edge and then the band gap energy decreased from 3 to 2.1 eV. Photocatalytic results indicated that TiO2 had a highest photocatalytic decolorization of the RR 198 under UV irradiation whereas photocatalytic decolorization of the RR 198 under visible irradiation increased in the presence of Fe-doped TiO2 nanoparticles. Among the samples, Fe-1 wt% doped TiO2 nanoparticles showed the highest photocatalytic decolorization of RR198 under visible light irradiation.  相似文献   

18.
Nitrogen-doped titanium oxide (TiOxNy) films were prepared with ion-assisted electron-beam evaporation. The nitrogen (N) incorporated in the film is influenced by the N2 flux modulated by the N2 flow rate through an ion gun. The TiOxNy films have the absorption edge of TiO2 red-shifted to 500 nm and exhibit visible light-induced photocatalytic properties in the surface hydrophilicity and the degradation of methylene blue. The structures and states of nitrogen in the films are investigated by X-ray diffraction patterns (XRD), and X-ray photoelectron spectroscopy (XPS) and related to their visible light-induced photocatalytic properties. The results indicate that the substitutional N in anatase TiO2 can induce visible light photocatalysis. The substitutional N is readily doped by the energetic nitrogen ions from the ion gun. The best photocatalytic activity is obtained at the largest N loading about 5.6 at.%, corresponding to the most substitutional N in anatase TiO2. The film exhibits the degradation of methylene blue with a rate-constant (k) about 0.065 h−1 and retaining 7° water contact angle on the surface under visible light illumination.  相似文献   

19.
TiO2 nanotubes were prepared by hydrothermal method and Au (or Pt) was loaded on TiO2 nanotubes by photodeposition method. The photocatalysts were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and N2 adsorption technique, respectively. The photocatalytic properties of the samples were also investigated. The results show that TiO2 nanotubes with uniform diameter were prepared, and they have specific surface areas over 400 m2/g. The specific surface areas of TiO2 nanotubes decrease with the increasing of calcining temperature, and crystalline phase of TiO2 in the wall of nanotubes was transformed from anatase into rutile phase in calcination process. The photocatalytic activities of TiO2 nanotubes are higher than that of nanosized TiO2, and the photocatalytic activities of TiO2 nanotubes were enhanced after loading Au (or Pt). After irradiation for 40 min under a 300 W of middle-pressure mercury lamp (MPML), the degradation rate of methyl orange solution using the Au/TiNT-500 (or Pt/TiNT-500) as a catalyst can reach 96.1% (or 95.1%). On the other hand, Au-loaded sample has evident adsorption peak in visible range, indicating that Au-loaded TiO2 nanotubes are hopeful to become visible light photocatalyst.  相似文献   

20.
Catalytically active graphene-based hollow TiO2 composites(TiO2/RGO) were successfully synthesized via the solvothermal method. Hollow TiO2 microspheres are uniformly dispersed on RGO. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) were used for the characterization of prepared photocatalysts. The mass of GO was optimized in the photocatalytic removal of rhodamine B (RhB) as a model dye pollutants. The results showed that graphene-based hollow TiO2 composites exhibit a significantly enhanced photocatalytic activity in degradation of RhB under either UV or visible light irradiation. The formation of the graphene-based hollow TiO2 composites and the photocatalytic mechanisms under UV and visible light were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号