首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of oxygen plasma treatment on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fibers and aging effect of the oxygen plasma modified PBO fiber surfaces were investigated by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and dynamic contact angle analysis (DCAA), respectively. The results indicated that the oxygen plasma treatment introduced some polar groups to PBO fiber surfaces, enhanced surface roughness and changed surface morphologies of PBO fibers by plasma etching and oxidative reactions. Surface wettability of PBO fibers may be significantly improved by increasing surface free energy of the fibers via oxygen plasma treatment. Aging effect of the oxygen plasma treated PBO fibers showed that the fiber surface wettability degraded in the first several days after the plasma treatment, and it was found to be changeless as the aging time continued as long as 30 days.  相似文献   

2.
Effects of γ-ray radiation grafting on aramid fibers and its composites   总被引:2,自引:0,他引:2  
Armos fiber was modified by Co60 γ-ray radiation in the different concentrations’ mixtures of phenol-formaldehyde and ethanol. Interlaminar shear strength (ILSS) was examined to characterize the effects of the treatment upon the interfacial bonding properties of Armos fibers/epoxy resin composites. The results showed that the ILSS of the composite, whose fibers were treated by 500 kGy radiation in 1.5 wt% PF, was improved by 25.4%. Nanoindentation technique analysis showed that the nanohardnesses of the various phases (the fiber, the interface and the matrix) in the composite, whose fibers were treated, were correspondingly higher than those in the composite, whose fibers were untreated. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectrum confirmed the increase in the polar groups at the fibers’ surface. Atomic force microscopy (AFM) results revealed that the surface of the fibers treated was rougher than that of the fibers untreated. The wettability of the fibers’ surface was also enhanced by the treatment. The conclusion that γ-ray irradiation grafting significantly improved the surface properties of Armos fibers could be drawn.  相似文献   

3.
《Composite Interfaces》2013,20(6):611-628
This research used Co60 γ-ray radiation to modify Armos fibers in 1,2-epoxy-3-chloropropane. After the treatment, the interlaminar shear strength (ILSS) values of aramid/epoxy composites were improved by about 20%. Surface elements of Armos fibers were determined by XPS analysis, which indicated that the oxygen/carbon ratio was increased. The surface of the fibers treated was rougher than that of the untreated fibers when examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Fourier transform infrared (FT-IR) spectra confirmed that the epoxy group was grafted onto the fibers. The wettability of the fibers' surface was also enhanced by the treatment. Nanoindentation technique analysis showed that the nanohardnesses of the various phases (the fiber, the interface and the matrix) in the composite, whose fibers were treated, were correspondingly higher than those in the composite, whose fibers were untreated. The results indicate that γ-ray irradiation grafting technique, which is a suitable batch process for industrialization, can modify the physicochemical properties of Armos fibers and improve the interfacial adhesion of its composite.  相似文献   

4.
The hydrophobicity and tensile strength of muga silk fiber are investigated using radiofrequency (RF) Ar plasma treatment at various RF powers (10-30 W) and treatment times (5-20 min). The Ar plasma is characterized using self-compensated Langmuir and emissive probe. The ion energy is observed to play an important role in determining the tensile strength and hydrophobicity of the plasma treated fibers. The chemical compositions of the fibers are observed to be affected by the increase in RF power rather than treatment time. XPS study reveals that the ions that are impinging on the substrates are mainly responsible for the cleavage of peptide bond and side chain of amino acid groups at the surface of the fibers. The observed properties (tensile strength and hydrophobicity) of the treated fibers are found to be dependent on their variation in atomic concentration and functional composition at the surfaces. All the treated muga fibers exhibit almost similar thermal behavior as compared to the virgin one. At RF power of 10 W and treatment time range of 5-20 min, the treated fibers exhibit properties similar to that of the virgin one. Higher RF power (30 W) and the increase in treatment time deteriorate the properties of the fibers due to incorporation of more surface roughness caused by sufficiently high energetic ion bombardment. The properties of the plasma treated fibers are attempted to correlate with the XPS analysis and their surface morphologies.  相似文献   

5.
In this paper, the effects of air dielectric barrier discharge (DBD) plasma treatment time on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fiber were investigated. The surface characteristics of PBO fiber before and after the plasma treatments were analyzed by dynamic contact angle (DCA) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). DCA measurements indicated that the surface wettability of PBO fiber was improved significantly by increasing the fiber surface free energy via air DBD plasma treatments. The results were confirmed by the improvement of adhesion of a kind of thermoplastic resin to PBO fiber which was observed by SEM, showing that more resin was adhering evenly to the fiber surface. AFM measurement revealed that the surface topography of PBO fiber became more complicated and the surface roughness was greatly enhanced after the plasma treatments, and XPS analysis showed that some new polar groups (e.g. OCO) were introduced on plasma treated PBO fiber surface. The results of this study also showed that the surface properties of PBO fiber changed with the elongation of plasma treatment time.  相似文献   

6.
In this article, polyimide (PI) fibers were modified by alkali treatment, and PI fiber-reinforced epoxy composites were fabricated. The effects of different alkali treatment times on the surface properties of the PI fibers and the adhesion behaviors of PI fiber/epoxy composites were studied. The surface morphologies, chemical compositions, mechanical properties, and surface free energy of the PI fibers were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, single-fiber tensile strength analysis, and dynamic contact angle analysis, respectively. The results show that alkali treatment plays an important role in the improvement of the surface free energy and the wettability of PI fibers. We also found that, after the 3 min, 30 °C, 20 wt% NaOH solution treatment, the fibers possessed good mechanical properties and surface activities, and the interlaminar shear strength of the composites increased to 64.52 MPa, indicating good interfacial adhesion properties.  相似文献   

7.
In this work, low-pressure air plasma has been used to improve polyethylene terephthalate (PET) surface properties for technical applications. Surface free energy values have been estimated using contact angle value for different exposure times and different test liquids. Surface composition and morphology of the films were analyzed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Surface topography changes related with the etching mechanism have been followed by weight loss study. The results show a considerable improvement in surface wettability and the surface free energy values even for short exposure times in the different discharge areas (discharge area, afterglow area and remote area), as observed by a remarkable decrease in contact angle values. Change of chemical composition made the polymer surfaces to be highly hydrophilic, which mainly depends on the increase in oxygen-containing groups. In addition to, the surface activation and AFM analyses show obvious changes in surface topography as a consequence of the plasma-etching mechanism.  相似文献   

8.
In this study, we used calyculin A to induce premature condensed chromosomes (PCC). S-phase PCC is as “pulverized” appearance when viewed by light microscopy. Then, we applied atomic force microscopy (AFM) to investigate the ultrastructual organization of S-phase PCC. S-phase PCC shows ridges and grooves as observed by AFM. After trypsin treatment, chromosome surface roughness is increased and chromosome thickness is decreased. At high magnification, the ridges are composed of densely packed 30 nm chromatin fibers which form chromosome axis. Around the ridges, many 30 nm chromatin fibers radiate from center. Some of the 30 nm chromatin fibers are free ends. The grooves are not real “gap”, but several 30 nm chromatin fibers which connect two ridges and form “grid” structure. There are four chromatin fibers detached from chromosome: two free straight 30 nm chromatin fibers, one loop chromatin fiber and one straight combining with loop chromatin fiber. These results suggested that the S-phase PCC was high-order organization of 30 nm chromatin fibers and the 30 nm chromatin fibers could exist as loops and free ends.  相似文献   

9.
Polyethersulphone (PES) was modified to improve the hydrophilicity of its surface, which in turn helps in improving its adhesive property. The modified PES surface was characterized by contact angle measurement, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Vicker’s microhardness measurement. The contact angles of the modified PES reduces from 49° to 10° for water. The surface free energy (SFE) calculated from measured contact angles increases from 66.3 to 79.5 mJ/m2 with the increase in plasma treatment time. The increase in SFE after plasma treatment is attributed to the functionalization of the polymer surface with hydrophilic groups. The XPS analysis shows that the ratio of O/C increases from 0.177 to 0.277 for modified PES polymer. AFM shows that the average surface roughness increases from 6.9 nm to 23.7 nm due to the increase in plasma treatment time. The microhardness of the film also increases with plasma treatment.  相似文献   

10.
The influence of He/O2 atmospheric pressure plasma jet (APPJ) treatment on subsequent wet desizing of polyacrylate on PET fabrics was studied in the present paper. Weight loss results indicated that the weight loss increased with an increase of plasma treatment time. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed an increased surface roughness after the plasma treatment. SEM also showed that the fiber surfaces were as clean as unsized fibers after 35 s treatment followed by NaHCO3 desizing. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen-based functional groups increased for the plasma treated polyacrylate sized fabrics. The percent desizing ratio (PDR) results showed that more than 99% PDR was achieved after 65 s plasma treatment followed by a 5 min NaHCO3 desizing. Compared to conventional wet desizing, indicating that plasma treatment could significantly reduce desizing time.  相似文献   

11.
Surface analysis of plasma grafted carbon fiber   总被引:1,自引:0,他引:1  
The surface characteristics of carbon fibers were studied by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and wetting measurements. The surface of carbon fiber was modified by means of plasma graft silsesquioxane. The oxygen/carbon and silicon/carbon ratio increased rapidly after treatments. Fitting the C 1s, O 1s, and Si 2p spectra demonstrated that new photopeaks were emerged, which were indicated C-Si, Si-O groups, respectively. The degree of surface roughness and the wettability of carbon fiber surface were both increased by plasma graft silsesquioxane. The results may shed some light on the design of the appropriate surface structure, which could react with resin, and the manufacture of the carbon fiber reinforced composites.  相似文献   

12.
The effectiveness of improving the wettability of HDPE powders within less than 0.1 s by plasma surface modification in a Plasma Downer Reactor is investigated. A correlation is revealed between the XPS results (O/C-ratio) and the wettability (contact angle, polar surface tension by capillary rise method). The O2-content in the plasma feed gas has been adjusted for best wettability properties. XPS results indicate the formation of CO and COOH functional groups on the powder surface. The O/C-ratio increased from 0.0 (no oxygen on the non-treated powder) up to 0.15 for the plasma treated HDPE powder surface. With pure O2-plasma treatment, a water contact angle reduction from >90° (no water penetration into the untreated PE powder) down to 65° was achieved. The total surface free energy increased from 31.2 to 45 mN/m. Ageing of treated powders occurs and proceeds mostly within the first 7 days of storage. Contact angle measurements and O1s/O2s intensity ratio data support that ageing is mainly a diffusion-controlled process. Nevertheless, XPS results show the presence of oxygen functional groups even after 40 days, which explains why the powder is still dispersible in water without any addition of surfactants.  相似文献   

13.
An audio-frequency plasma polymerization set-up with a planar plasma source was used to deposit thin heptadecafluoro-1-decene (HDFD) plasma polymer films. The morphology and chemical structure of the films after deposition were compared with the state of the film after a subsequent Ar-plasma treatment by means of in situ Fourier transform infrared reflection absorbance spectroscopy (FT-IRRAS), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM) as well as contact angle measurements. The results revealed the correlation of wettability of the model Teflon-like films with change of surface chemistry and surface topography as a result of Ar-plasma treatment.  相似文献   

14.
Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, CO and OC-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.  相似文献   

15.
《Composite Interfaces》2013,20(7-9):847-867
Forced atmospheric (air) plasma treatment (FAPT) was applied to wood plastic composite (WPC) and continuous glass fiber reinforced plastic (FRP) surfaces to improve their adhesive bonding properties. The FRP was composed of oriented continuous E-glass fibers in a polypropylene matrix, while the WPC was fabricated using wood flour, polypropylene and additives. The FAPT was applied using two levels of discharge length projected from the discharge head (2.5″ and 1″) to ionize the air, oxidize the surfaces and improve wettability. The treatment was performed by passing the electrode over either surface, five or ten times. Surface characterization consisted of thermodynamic (surface energy determination), chemical (X-ray photoelectron spectroscopy), mechanical (shear strength) and microscopic (atomic force microscopy (AFM)) analysis. The results indicate that the acid–base component of the surface energy for both WPC and FRP after FAPT correlates with an increase in wettability. X-ray photoelectron spectroscopy was performed on wood regions and non-wood regions of the WPC surfaces; the oxygen concentration increased to a larger extent in the non-wood regions. Bonding shear strength measurements indicated increases of 50% after FAPT on WPC surfaces (2.5″ discharge length, 1 pass) and up to 200% for the hybrid WPC–FRP. Atomic force microscopy measurements using a silicon tip probe showed increases in adhesive force interactions up to 56% on WPC surfaces post-FAPT.  相似文献   

16.
Low pressure plasma treatment using radiofrequency (rf) discharge of argon gas was employed to improve the hydrophilicity of polypropylene. The effects of argon plasma on the wettability, surface chemistry and surface morphology of polypropylene were studied using static contact angle measurements, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Increase in surface energy of polypropylene was observed as a result of argon plasma treatment. SEM and AFM images revealed the increased surface roughness. A set of identified process variables (rf power, pressure, argon flow rate and time) were used in this study and were optimized using central composite design (CCD) of response surface methodology (RSM). A statistical model was developed to represent the surface energy in terms of the process variables mentioned above. Accuracy of the model was verified and found to be high.  相似文献   

17.
Amorphous hydrogenated silicon carbonitride thin films (a-Si:C:N:H), deposited by plasma enhanced chemical vapour deposition (PECVD) using hexamethyldisilazane (HMDSN) as monomer and Ar as feed gas, have been investigated for their structural and optical properties as a function of the deposition RF plasma power, in the range of 100-300 W. The films have been analysed by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), UV-vis-NIR spectrophotometry and atomic force microscopy (AFM). From the analysis of the FT-IR spectra it results that the films become more amorphous and inorganic as RF plasma power increases. The incorporation of oxygen in the deposited layers, mainly due to the atmospheric attack, has been evaluated by XPS and FT-IR spectroscopy. Reflectance/transmittance spectra, acquired in the range of 200-2500 nm, allow to descrive the film absorption edge for interband transitions. A relationship between the optical energy band gap, deduced from the absorption coefficient curve, and the deposition RF plasma power has been investigated. The reduction of the optical energy gap from 3.85 to 3.69 eV and the broadening of the optical absorption tail with RF plasma power increasing from 100 to 300 W are ascribed to the growth of structural disorder, while the increase of the refractive index, evaluated at 630 nm, is attributed to a slight densification of the film. The AFM analysis confirms the amorphous character of the films and shows how the deposited layers become rougher when RF plasma power increases. The wettability of the film has been studied and related to the chemical composition and to the morphology of the deposited layers.  相似文献   

18.
In order to investigate the effect of the polyamide benzimidazole group on the surface wettability and interfacial adhesion of fiber/matrix composites, surface features of two kinds of aramid fibers, poly (p-phenylene terephthalamide) fiber (Kevlar-49) and poly-(polyamide benzimidazole-co-p-phenylene terephthalamide) (DAFIII), have been analyzed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle analysis (CAA) system, respectively.The results show that with the incorporation of the polyamide benzimidazole segment, more polar functional groups exist on DAFIII surface. The contact angles of water and diiodomethane on DAFIII surface get smaller. The surface free energy of DAFIII increases to 36.5 mJ/m2, which is 2.3% higher than that of Kevlar-49. In addition, DAFIII has a larger rough surface compared with that of Kevlar-49 due to different spinning processes. The interfacial shear strength (IFSS) of DAFIII/matrix composite is 25.7% higher than that of Kevlar-49/matrix composite, in agreement with the observed results from surface feature tests. SEM micrographs of failed micro-droplet specimens reveal a strong correlation between the fracture features and the observed test data.  相似文献   

19.
J. Li 《Applied Surface Science》2009,255(20):8682-8684
Dielectric barrier discharges (DBD) in ambient air are used on carbon fiber to improve the fiber surface activity. Carbon fibers with length of 75 μm are placed into the plasma configuration. The interaction between modified carbon fibers and polypropylene (PP) was studied by three-point bending (TPB) test. The chemical changes induced by the treatments on carbon fiber surface are examined using X-ray photoelectron spectroscopy (XPS). XPS results reveal that the carbon fiber modified with the DBD at atmospheric pressure show a significant increase in oxygen and nitrogen concentration. These results demonstrate that the surface of the carbon fiber is more active and hydrophilic after plasma treatments using a DBD operating in ambient air.  相似文献   

20.
Surface chemistry of atmospheric plasma modified polycarbonate substrates   总被引:1,自引:0,他引:1  
Surface of polycarbonate substrates were activated by atmospheric plasma torch using different gas pressure, distance from the substrates, velocity of the torch and number of treatments. The modifications were analyzed by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-vis spectrophotometry. Plasma treatment caused the surface characteristics to become more hydrophilic as measured by the water contact angle, which decreased from 88° to 18°. The decrease in contact angle was mainly due to oxidation of the surface groups, leading to formation of polar groups with hydrophilic property. XPS results showed an increase in the intensity of -(C-O)- groups and also introduction of new functional groups i.e. -(O-CO)- after the treatment process. AFM topographic images demonstrated an increase in the rms roughness of the surface from 2.0 nm to 4.0 nm caused by the treatment. Increase in rms roughness of the surface caused relevant decrease in transmission up to ∼2-5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号