首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The development of laser techniques for the deposition of polymer and biomaterial thin films on solid surfaces in a controlled manner has attracted great attention during the last few years. Here we report the deposition of thin polymer films, namely Polyepichlorhydrin by pulsed laser deposition. Polyepichlorhydrin polymer was deposited on flat substrate (i.e. silicon) using an NdYAG laser (266 nm, 5 ns pulse duration and 10 Hz repetition rate).The obtained thin films have been characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and spectroscopic ellipsometry.It was found that for laser fluences up to 1.5 J/cm2 the chemical structure of the deposited polyepichlorhydrin polymer thin layers resembles to the native polymer, whilst by increasing the laser fluence above 1.5 J/cm2 the polyepichlorohydrin films present deviations from the bulk polymer.Morphological investigations (atomic force microscopy and scanning electron microscopy) reveal continuous polyepichlorhydrin thin films for a relatively narrow range of fluences (1-1.5 J/cm2).The wavelength dependence of the refractive index and extinction coefficient was determined by ellipsometry studies which lead to new insights about the material.The obtained results indicate that pulsed laser deposition method is potentially useful for the fabrication of polymer thin films to be used in applications including electronics, microsensor or bioengineering industries.  相似文献   

2.
Vanadium-doped ZnO films (Zn1−xVxO, where x = 0.02, 0.03, 0.05 and 0.07), were formed from ceramic targets on c-cut sapphire substrates using pulsed laser deposition at substrate temperature of 600 °C and oxygen pressure of 10 Pa. In order to clarify how the vanadium concentration influences the films’ properties, structural and magnetic investigations were performed. All films crystallised in wurtzite phase and presented a c-axis preferred orientation at low concentrations of vanadium. The results implied that the doping concentration and crystalline microstructure influence strongly the system's magnetic characteristics. Weak ferromagnetism was registered for the film with the lowest doping concentration (2 at.%), which exhibited a ferromagnetic behavior at Curie temperature higher than 300 K. Increasing the vanadium content in the film caused degradation of the magnetic ordering.  相似文献   

3.
The difficulties in synthesizing phase pure BaTiO3 doped-(Na0.5Bi0.5)TiO3 are known. In this work, we reporting the optimized pulsed laser deposition (PLD) conditions for obtaining pure phase 0.92(Na0.5Bi0.5)TiO3-0.08BaTiO3, (BNT-BT0.08), thin films. Dielectric, ferroelectric and piezoelectric properties of BNT-BT0.08, thin films deposited by PLD on Pt/TiO2/SiO2/Si substrates are investigated in this paper. Perovskite structure of BNT-BT0.08 thin films with random orientation of nanocrystallites has been obtained by deposition at 600 °C. The relative dielectric constant and loss tangent at 100 kHz, of BNT-BT0.08 thin film with 530 nm thickness, were 820 and 0.13, respectively. Ferroelectric hysteresis measurements indicated a remnant polarization value of 22 μC/cm2 and a coercive field of 120 kV/cm. The piezoresponse force microscopy (PFM) data showed that most of the grains seem to be constituted of single ferroelectric domain. The as-deposited BNT-BT0.08 thin film is ferroelectric at the nanoscale level and piezoelectric.  相似文献   

4.
5.
Lead-free ferroelectric K0.5Na0.5NbO3 (KNN) thin films have been prepared on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition process. The structures, crystal orientations and electrical properties of thin films have been investigated as a function of deposition temperature from 680 °C to 760 °C. It is found that the deposition temperature plays an important role in the structures, crystal orientations and electrical properties of thin films. The crystallization of thin films improves with increasing deposition temperature. The thin film deposited at 760 °C exhibits strong (0 0 1) preferential orientation, large dielectric constant of 930 and the remnant polarization of 8.54 μC/cm2.  相似文献   

6.
The development of integrated waveguide lasers for different applications such as marking, illumination or medical technology has become highly desirable. Diode pumped planar waveguide lasers emitting in the green visible spectral range, e.g. thin films from praseodymium doped fluorozirconate glass matrix (called ZBLAN, owing to the main components ZrF4, BaF2, LaF3, AlF3 and NaF) as the active material pumped by a blue laser diode, have aroused great interest. In this work we have investigated the deposition of Pr:ZBLAN thin films using pulsed laser radiation of λ = 193 and λ = 248 nm. The deposition has been carried out on MgF2 single crystal substrates in a vacuum chamber by varying both processing gas pressure and energy fluence. The existence of an absorption line at 210 nm in Pr:ZBLAN leads to absorption and radiative relaxation of the absorbed laser energy of λ = 193 nm preventing the evaporation of target material. The deposited thin films consist of solidified and molten droplets and irregular particulates only. Furthermore, X-ray radiation has been applied to fluoride glass targets to enhance the absorption in the UV spectral region and to investigate the deposition of X-ray treated targets applying laser radiation of λ = 248 nm. It has been shown that induced F-centres near the target surface are not thermally stable and can be easily ablated. Therefore, λ = 248 nm is not suitable for evaporation of Pr:ZBLAN.  相似文献   

7.
ZnO thin films were grown on Si(1 0 0) substrates using pulsed laser deposition in O2 gas ambient (10 Pa) and at different substrate temperatures (25, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using XRD, AFM and SEM. At substrate temperature of T=150 °C, a good quality ZnO film was fabricated that exhibits an average grain size of 15.1 nm with an average RMS roughness of 3.4 nm. The refractive index and the thickness of the thin films determined by the ellipsometry data are also presented and discussed.  相似文献   

8.
Epitaxial Pb(Zr,Ti)O3 (PZT) thin films with thicknesses in the range of 50-200 nm and with 0.2 Zr/(Zr + Ti) ratio, were grown by pulsed laser deposition (PLD).The substrates used for PLD deposition are single crystalline 0.5% Nb-doped (1 0 0) SrTiO3 (STON). SrRuO3 (SRO) thin films were deposited as bottom and top electrodes in order to have minimum structural misfit, to insure on one side high quality growth, and on the other side to minimize the influence of the extended structural defects. Structural and electrical characterization was performed. The epitaxial PZT films are c-axis oriented and have an average roughness of 0.4 nm. The ferroelectric behavior was proved in all investigated films by the presence of the hysteresis loops and by the butterfly shape of the capacitance-voltage (C-V) characteristics. The ferroelectricity was present even in the samples with relative high leakage currents, down to a thickness of 50 nm. These results are essential when small thickness is needed for miniaturization of ferroelectric devices using PZT.  相似文献   

9.
《Current Applied Physics》2018,18(12):1577-1582
While controlling the cation contents in perovskite rare-earth nickelate thin films, a metal-to-insulator phase transition is reported. Systematic control of cation stoichiometry has been achieved by manipulating the irradiation of excimer laser in pulsed laser deposition. Two rare-earth nickelate bilayer thin-film heterostructures with the controlled cation stoichiometry (i.e. stoichiometric and Ni-excessive) have been fabricated. It is found that the Ni-excessive nickelate film is structurally less dense than the stoichiometric film, albeit both of them are epitaxial and coherent with respect to the underlying substrate. More interestingly, as a temperature decreases, a metal-to-insulator transition is only observed in the Ni-excessive nickelate films, which can be associated with the enhanced disproportionation of the Ni charge valence. Based on our theoretical results, possible origins (e.g. anti-site defects) of the low-temperature insulating state are discussed with the need of future work for deeper understanding. Our work can be utilized to realize unusual physical phenomena (e.g. metal-to-insulator phase transitions) in complex oxide films by manipulating the chemical stoichiometry in pulsed laser deposition.  相似文献   

10.
In this paper the structure, morphology and optical properties of Pd thin films deposited on glass substrate by pulse laser deposition technique at two different substrate temperatures have been investigated. The fabricated films were characterized by various methods such as XRD, AFM, and UV-vis-NIR spectroscopy. The influence of surface roughness and angle of incidence with p polarization was investigated experimentally by optical property of palladium (Pd) thin films of two different thicknesses and rms roughness from transmission measurement in the visible spectral range. It has been shown that the experimental transmittance spectra agree well with their theoretical values for absorbing Pd thin film. The transmittance of thin film increases with increase in incident angle for the same sample.  相似文献   

11.
Copper nitride thin films were prepared on glass and silicon substrates by ablating a copper target at different pressure of nitrogen. The films were characterized in situ by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and ex situ by X-ray diffraction (XRD). The nitrogen content in the samples, x = [N]/[Cu], changed between 0 and 0.33 for a corresponding variation in nitrogen pressure of 9 × 10−2 to 1.3 × 10−1 Torr. Using this methodology, it is possible to achieve sub-, over- and stoichiometric films by controlling the nitrogen pressure. The XPS results show that is possible to obtain copper nitride with x = 0.33 (Cu3N) and x = 0.25 (Cu4N) when the nitrogen pressure is 1.3 × 10−1 and 5 × 10−2 Torr, respectively. The lattice constants obtained from XRD results for copper nitride with x = 0.25 is of 3.850 Å and with x = 0.33 have values between 3.810 and 3.830 Å. The electrical properties of the films were studied as a function of the lattice constant. These results show that the electrical resistivity increases when the lattice parameter is decreasing. The electrical resistivity of copper nitride with x = 0.25 was smaller than samples with x = 0.33.  相似文献   

12.
Knowledge about the crystallization and grain growth characteristics of metal oxide thin films is essential for effective microstructural engineering by thermal post-annealing and the integration to Si-based miniaturized electroceramic devices. Finite size and interface effects may cause fundamentally different behavior compared to three dimensional macroscopic systems. This work presents a comprehensive investigation of the crystallization kinetics and microstructural evolution upon thermal post-annealing of amorphous 200 nm and 1.2 μm thin films of 8 mol% yttria-stabilized zirconia grown by pulsed laser deposition (PLD) using ex- and in-situ X-ray diffraction, Raman spectroscopy, and electron microscopy techniques. The layers exhibit a remarkably low crystallization temperature of 200-250 °C while exposure to energetic electrons induces the formation of randomly dispersed ~ 20 nm sized crystallites already at ambient temperature. The isothermal amorphous to crystalline phase transformation kinetics can be described quantitatively by the Johnson-Mehl-Avrami-Kolmogorov model. They reveal characteristics of a three dimensional growth under cation bulk diffusion control with heterogeneous nucleation that changes from continuous to instantaneous initial seeding at temperatures above 300 °C. Large (> 100 nm) equiaxed grains are formed rapidly without a stabilization of transient nanocrystals during the thermally induced phase transformation. A stagnation of normal grain growth resulting in a logarithmic normal size distribution is observed once the average grain dimensions approach the film thickness. The results on the crystallization and grain growth of the PLD-grown YSZ films are evaluated with regards to the fabrication of YSZ solid electrolyte membranes for Si-supported micro solid oxide fuel cells and gas sensors.  相似文献   

13.
Pulsed laser deposition (PLD) is a conceptually and experimentally simple yet highly versatile tool for thin films and multi-layer film research. The mechanisms, advantages and disadvantages of pulsed laser deposition were reviewed. The process and some methods to resolve the drawbacks of PLD were discussed. Pulsed laser deposition of hydroxyapatite thin films was reviewed. Simple adjustment of PLD parameters can deposit hydroxyapatite in situ in crystalline form, amorphous films or HA with other calcium phosphate phases. Compared with plasma sprayed HA coatings the pulsed laser deposition HA thin films have higher coating/substrate adhesion and have minor undesirable phases under optimal conditions. Finally, we suggested some new researches should be done.  相似文献   

14.
Highly transparent conductive Dy2O3 doped zinc oxide (ZnO)1-x(Dy2O3)x nanocrystalline thin films with x from 0.5% to 5% have been deposited on glass substrate by pulsed laser deposition technique. The structural, electrical and optical properties of Dy2O3 doped thin films were investigated as a function of the x value. The experimental results show that the Dy concentration in Dy-doped ZnO thin films has a strong influence on the material properties especially electrical properties. The resistivity decreased to a minimum value of 5.02 × 10−4 Ω cm with x increasing from 0.5% to 1.0%, then significantly increased with the further increasing of x value. On the contrary, the optical direct band gap of the (ZnO)1-x(Dy2O3)x films first increased, then decreased with x increasing. The average transmission of Dy2O3 doped zinc oxide films in the visible range is above 90%.  相似文献   

15.
InN has attracted much attention due to its optical and electrical properties that make it suitable for the fabrication of infrared optical devices and high-speed electronic devices. In this work we report on the structural properties and morphology of InN thin films grown on different substrates by radiofrequency plasma beam assisted pulsed laser deposition. Sapphire and silicon substrates were considered for the growth of these films. The influence of substrate type and growth parameters on the morphology and structural properties of the resulting InN thin films is discussed. The structural analysis of the samples was performed by means of X-ray diffraction. The morphology of the thin films was investigated through atomic force microscopy. Although growth of InN from a metallic In target using nitrogen radiofrequency plasma assisted pulsed laser deposition was achieved for all the samples, growth conditions were found to play an important role on the crystal quality of the resulting thin films.  相似文献   

16.
The amorphous silicon oxide SiO2−x thin films were prepared by the plasma-assisted pulsed laser deposition (PLD) method. X-ray diffraction spectrometry (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), UV-VIS-NIR scanning spectrophotometry and ellipsometry were used to characterize the crystallinity, microscopic morphology and optical properties of obtained thin films. The influences of substrate temperatures, oxygen partial pressures and oxygen plasma assistance on the compositions of silicon oxide (SiO2−x) thin films were investigated. Results show that the deposited thin films are amorphous and have high surface quality. Stoichiometric silicon dioxide (SiO2) thin film can be obtained at elevated temperature of 200 °C in an oxygen plasma-assisted atmosphere. Using normal incidence transmittance, a novel and simple method has been proposed to evaluate the value of x in transparent SiO2−x thin films on a non-absorbing flat substrate.  相似文献   

17.
Bioactive glass (BG), calcium hydroxyapatite (HA), and ZrO2 doped HA thin films were grown by pulsed laser deposition on Ti substrates. An UV KrF* (λ = 248 nm, τ ≥ 7 ns) excimer laser was used for the multi-pulse irradiation of the targets. The substrates were kept at room temperature or heated during the film deposition at values within the (400-550 °C) range. The depositions were performed in oxygen and water vapor atmospheres, at pressure values in the range (5-40 Pa). The HA coatings were heat post-treated for 6 h in a flux of hot water vapors at the same temperature as applied during deposition. The surface morphology, chemical composition, and crystalline quality of the obtained thin films were studied by scanning electron microscopy, atomic force microscopy, and X-ray diffractometry. The films were seeded for in vitro tests with Hek293 (human embryonic kidney) cells that revealed a good adherence on the deposited layers. Biocompatibility tests showed that cell growth was better on HA than on BG thin films.  相似文献   

18.
We obtained AlN thin films by pulsed laser deposition (PLD) from a polycrystalline AlN target using a pulsed KrF* excimer laser source (248 nm, 25 ns, intensity of ∼4 × 108 W/cm2, repetition rate 3 Hz, 10 J/cm2 laser fluence). The target-Si substrate distance was 5 cm. Films were grown either in vacuum (10−4 Pa residual pressure) or in nitrogen at a dynamic pressure of 0.1 and 10 Pa, using a total of 20,000 subsequent pulses. The films structure was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and spectral ellipsometry (SE). Our TEM and XRD studies showed a strong dependence of the film structure on the nitrogen content in the ambient gas. The films deposited in vacuum exhibited a high quality polycrystalline structure with a hexagonal phase. The crystallite growth proceeds along the c-axis, perpendicular to the substrate surface, resulting in a columnar and strongly textured structure. The films grown at low nitrogen pressure (0.1 Pa) were amorphous as seen by TEM and XRD, but SE data analysis revealed ∼1.7 vol.% crystallites embedded in the amorphous AlN matrix. Increasing the nitrogen pressure to 10 Pa promotes the formation of cubic (≤10 nm) crystallites as seen by TEM but their density was still low to be detected by XRD. SE data analysis confirmed the results obtained from the TEM and XRD observations.  相似文献   

19.
G. Soto   《Applied Surface Science》2004,230(1-4):254-259
Titanium carbide (TiCx) thin films were grown on (1 0 0)-Si substrates by a pulsed laser deposition (PLD) method using a Ti target in methane gas. The films are characterized in situ by Auger (AES), electron energy loss (EELS) and X-ray photoelectron spectroscopies (XPS). It was found that the reaction between the ablated Ti species and CH4 in the plasma plume influenced the C:Ti ratio. XPS numerical fitting for the C 1s transition revealed three Gaussians components. The main component, binding energy of 282.8 eV, is assigned to C making bonds with Ti, like in stoichiometric TiC. The second component, binding energy of 284.9 eV, is assigned to C---C bonds. A third component is found for films deposited at pressures higher than 25 mTorr at 286.5 eV. A post-deposition thermal treatment demonstrates that the Ti---C and C---C peaks are very stable, whereas, the third peak tends to decrease for temperatures higher than 200 °C. It is assumed that this last component is due to carbonyl complexes remnant in films. Finally, it can be concluded that the titanium carbide films processed by PLD is a chemically inhomogeneous material; mostly composed of sub-stoichiometric TiC and particulates of segregated carbon.  相似文献   

20.
Well-crystallized Ba0.5Sr0.5TiO3 thin films with good surface morphology were prepared on MgO(1 0 0) substrates by pulsed laser deposition technique at a deposition temperature of 800 °C under the oxygen pressure of 2 × 10−3 Pa. X-ray diffraction and atomic force microscopy were used to characterize the films. The full width at half maximum of the (0 0 2) Ba0.5Sr0.5TiO3 rocking curve and the root-mean-square surface roughness within the 5 μm × 5 μm area were 0.542° and 0.555 nm, respectively. The nonlinear optical properties of the films were determined by a single beam Z-scan method at a wavelength of 532 nm with laser duration of 55 ps. The results show that Ba0.5Sr0.5TiO3 thin films exhibit a fast third-order nonlinear optical response with the nonlinear refractive index and nonlinear absorption coefficient being n2 = 5.04 × 10−6 cm2/kW and β = 3.59 × 10−6 (m/W), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号