首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the addition of three types of surfactants (cationic, anionic, non-ionic) at different concentrations in the plating bath on the deposition rate, PTFE content and surface morphology of electroless Ni-P/PTFE composite coatings were investigated. It was demonstrated that the cationic and non-ionic surfactants created a uniform distribution of PTFE particles in the coatings. The effects of the surfactant type and concentration on the corrosion properties of Ni-P/PTFE coatings were also studied. The corrosion resistance was increased by the incorporation of PTFE particles into the Ni-P matrix. The level of improvement depended largely on the type and concentration of the applied surfactants.  相似文献   

2.
Electroless Ag-polytetrafluoroethylene (PTFE) composite coatings were prepared on stainless steel sheets. The existence and distribution of PTFE in the coatings were analysed with an energy dispersive X-ray microanalysis (EDX). The contact angle values and surface energies of the Ag-PTFE coatings, silver coating, stainless steel, titanium and E. coli Rosetta were measured. The experimental results showed that stainless steel surfaces coated with Ag-PTFE reduced E. coli attachment by 94-98%, compared with silver coating, stainless steel or titanium surfaces. The anti-bacterial mechanism of the Ag-PTFE composite coatings was explained with the extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The anticorrosion properties of the Ag-PTFE composite coatings in 0.9% NaCl solution were studied. The results showed that the corrosion resistance of the Ag-PTFE composite coatings was superior to that of stainless steel 316L.  相似文献   

3.
In this study, Ni-P-CNT composite coating was successfully deposited on the surface of copper by electroless plating. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) were used to characterize the coatings. The wear behavior of the coatings was investigated using a pin-on-disk test rig and subsequently friction coefficient data were reported. The corrosion behavior of the Ni-P and Ni-P-CNT coated specimen were evaluated through polarization curves and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl aqueous solution at the room temperature. The results indicated that the incorporation of carbon nanotubes (CNTs) in the coating improved both tribological behavior and corrosion resistance. These improvements have been attributed to superior mechanical properties, unique topological structure and high chemical stability of nanotubes.  相似文献   

4.
D. Dong 《Applied Surface Science》2009,255(15):7051-7055
Dispersible SiO2 nanoparticles were co-deposited with electroless Ni-P coating onto AISI-1045 steel substrates in the absence of any surfactants in plating bath. The resulting Ni-P/nano-SiO2 composite coatings were heat-treated for 1 h at 200 °C, 400 °C, and 600 °C, respectively. The hardness and wear resistance of the heat-treated composite coatings were measured. Moreover, the structural changes of the composite coatings before and after heat treatment were investigated by means of X-ray diffraction (XRD), while their elemental composition and morphology were analyzed using an energy dispersive spectrometer (EDS) and a scanning electron microscope (SEM). Results show that co-deposited SiO2 particles contributed to increase the hardness and wear resistance of electroless Ni-P coating, and the composite coating heat-treated at about 400 °C had the maximum hardness and wear resistance.  相似文献   

5.
Influence of heat treatment regime on adhesion and wear resistance of Ni-P electroless coating on AZ91 magnesium alloy is investigated in this work. The pretreated substrate was plated using a bath containing nickel sulphate, sodium hypophosphite and sodium acetate as main constituents. The coated samples were heat treated at 400-450 °C for 1-8 h. Adhesion of coating was estimated from the scratch test with an initial load of 8.80 N. Wear resistance was studied using the pin-on-disc method. It was found that there is no significant dependence of the coating wear resistance on heat treatment regime, as the formation of Al-Ni intermetallic sub-layers that reduce coating adhesion is limited to regions where Al17Mg12 phase is present in the substrate. Moreover, the coating shows good sliding properties due to the formation of oxide glazes in the wear track.  相似文献   

6.
In current research, low carbon steel plates were coated by Ni-P electroless method. The effect of adding different concentrations (ranging from 0.01 g/l to 0.5 g/l) of TiC nano-sized particles to the plating bath on deposition rate, surface morphology and corrosion behavior of Ni-P-TiC composite coatings were investigated. The surface morphology and the relevant structure were evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Corrosion behavior of the coated steel was evaluated by electrochemical impedance spectroscopy (EIS) and polarization techniques. The results showed that addition of TiC nano-particles to Ni-P electroless bath not only changes the surface morphology of Ni-P coating, but also improves corrosion resistance of the steel in comparison with TiC free Ni-P electroless coating. In addition, the deposition rate of coating was also affected by incorporation of TiC particles. It was also found that improvement in corrosion resistance largely depends on the phosphorous and TiC concentrations on the coatings.  相似文献   

7.
Electrochemical characteristics of a titanium nitride (TiN)-coated/nanotube-formed Ti-Ta-Zr alloy for biomaterials have been researched by using the magnetic sputter and electrochemical methods. Ti-30Ta-xZr (x = 3, 7 and 15 wt%) alloys were prepared by arc melting and heat treated for 24 h at 1000 °C in an argon atmosphere and then water quenching. The formation of oxide nanotubes was achieved by anodizing a Ti-30Ta-xZr alloy in H3PO4 electrolytes containing small amounts of fluoride ions at room temperature. Anodization was carried out using a scanning potentiostat, and all experiments were conducted at room temperature. The microstructure and morphology of nanotube arrays were characterized by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The TiN coatings were obtained by the radio-frequency (RF) magnetron sputtering technique. The depositions were performed from pure Ti targets on Ti-30Ta-xZr alloys substrates. The corrosion properties of the specimens were examined using potentiodynamic test in a 0.9% NaCl solution by using potentiostat. The microstructures of Ti-30Ta-xZr alloys were changed from an equiaxed to a needle-like structure with increasing Zr content. The interspace between the nanotubes was approximately 20, 80 and 200 nm for Zr contents of 3, 7 and 15 wt%, respectively. The corrosion resistance of the TiN-coated on the anodized Ti-30Ta-xZr alloys was higher than that of the untreated Ti alloys, indicating a better protective effect.  相似文献   

8.
Studies of the porosity in electroless nickel deposits on magnesium alloy   总被引:3,自引:0,他引:3  
In the present paper, the porosity of the plating coating was evaluated by the combination of corrodkote and filter paper, the effects of the plating solution on the porosity were investigated, and the properties of the porous coatings were studied through scanning electron microscopy (SEM) and electrochemical potentiodynamic polarization. The results show that the eriothrome black T indicator used as an indicator of the coating porosity for coatings on magnesium alloy is more effective than magneson indicator and sodium alizarinesulfonate indicator. The porosity in electroless nickel deposits on magnesium alloy was well evaluated by the combination of corrodkote and filter paper. It is revealed that the pores exist on both grain surface and grain boundaries. An affecting trend of the plating bath parameters on the coating porosity was obtained.  相似文献   

9.
The Ni-P/Ni-B duplex coatings were deposited on AZ91D magnesium alloy by electroless plating process and their structure, morphology, microhardness and corrosion resistance were evaluated. The duplex coatings were prepared using dual baths (acidic hypophosphite- and alkaline borohydride-reduced electroless nickel baths) with Ni-P as the inner layer. The coatings were amorphous in as-plated condition and crystallized and produced nickel borides upon heat-treatment. SEM observations showed that the duplex interface on the magnesium alloy was uniform and the compatibility between the layers was good. The Ni-P/Ni-B coatings microhardness and corrosion resistance of having Ni-B coating as the outer layer was higher than Ni-P coatings. The Ni-P/Ni-B duplex coatings on AZ91D magnesium alloy with high hardness and good corrosion resistance properties would expand their scope of applications.  相似文献   

10.
The effect of heat treatment on the corrosion behavior of reactive plasma sprayed TiN coatings in simulated seawater was investigated by electrochemical methods such as the corrosion potential-time curve (Ecorr − t), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and SEM, etc. The results showed that the corrosion potential of TiN coatings increased after heat treatment; the corrosion current of the TiN coatings after heat treatment (be hereafter referred to as HT-TiN) was 13.3% of the untreated coatings (be hereafter referred to as UT-TiN), and the polarization resistance of HT-TiN was 20 times of UT-TiN, which indicated that the heat treatment had significantly increased the corrosion resistance of the coatings. The corrosion behavior of the coatings was mainly local corrosion, and the local corrosion behavior mainly took place at the microdefects (crack and pores) of the coatings. The porosity of the coatings was reduced after heat treatment. The reason was that TiN reacted with O2 to form TiO2 and Ti3O during the heat treating, and volume expansion took place, which led to denser microstructure. The corrosion resistance of the coatings was therefore increased.  相似文献   

11.
Laser surface alloying of an electroless plating Ni–P coatings on an Al-356 aluminium alloy was carried out using a 1-kW pulsed Nd:YAG laser. The microstructure, chemical composition and phase identification of the alloyed layer were determined using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffractometry (XRD), respectively. It was shown that laser surface treatment produced a relatively smooth, crack-free and hard surface layer. The hardness of the surface significantly increased due to the formation of the uniformly distributed fine Ni–Al intermetallic phases. The corrosion behaviour of the surface alloyed specimens in 3.5% NaCl solution at 23 °C was also determined by electrochemical techniques. The laser-alloyed surface showed an improved corrosion and pitting potential compared to the substrate as well as the plated Ni–P coating.  相似文献   

12.
Surface free energy of a solid surface gives a direct measure of intermolecular interactions at interfaces and has a strong influence on adsorption and adhesion behaviour. However few data are available for the surface free energies of electroless Ni–P based composition coatings. In this paper, the electroless Ni–P, Ni–P-surfactant, Ni–Cu–P, Ni–P–PTFE and Ni–Cu–P–PTFE composite coatings were prepared under various coating conditions. The chemical compositions, surface morphology and thickness of the coatings were measured using an energy dispersive X-ray microanalysis (EDX), a scanning electron microscope (SEM) and a digital micrometer respectively. The contact angles of water, diiodomethane and ethylene glycol on the coatings were measured automatically using dataphysics OCA-20 contact angle analyser. The surface free energy of the coatings and their components (e.g. dispersion, polar or acid/base portions) were calculated using various methods. The experimental results showed that the incorporation of surfactant or PTFE particles into Ni–P matrixes has a significant influence on the surface free energy of the coatings, while the incorporation of copper into Ni–P matrixes has no significant influence on the surface free energy of the coatings.  相似文献   

13.
Electroless Ni-P and Ni-Co-P deposits were obtained on Al substrate. Their surface morphology, microstructure and composition were analyzed using SEM and XRD. Their corrosion resistance was characterized by anodic polarization curves. Based on the measurement of the thickness, electrical conductivity and magnetic conductivity of the deposits, their electromagnetic shielding effect values were calculated and the influence of cobalt on the corrosion and electromagnetic shielding properties of Ni-Co-P deposits was revealed. The results showed that cobalt improved the corrosion resistance and greatly enhanced the electromagnetic shielding property of Ni-Co-P deposits. Electroless Ni-Co-P deposits on Al substrate would impart the product with high corrosion resistance, good electromagnetic shielding effect and light weight.  相似文献   

14.
Ternary electroless Ni–Cu–P alloy films were deposited by using nickel sulphate (B1)- and nickel chloride (B2)-based alkaline baths. Alloy films were characterized for their structure, morphology, chemical composition and microhardness. A single broad peak was obtained in XRD for both B1 and B2 films and the calculated grain sizes are 1.6 and 1.9 nm, respectively. Optical microscopic examination of the deposited coatings revealed a less nodular structure for B2-based coatings. SEM micrographs showed that films were smooth and nodular. Compositional analysis made on these deposits using EDX and the chemical state identification by XPS showed that the coatings are almost identical. AFM studies showed that the deposits from B2 bath are comparatively smoother with less nodular structure. Microhardness measurements and potentiodynamic polarization studies in 3.5% NaCl solution showed that both deposits have similar properties.  相似文献   

15.
Al2O3 /TiN double and Al2O3/Cr/TiN triple coatings were produced on stainless steel substrates using plasma-detonation techniques. Investigation of the microstructure and characteristics of the coatings after the preparation was performed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Auger electron spectroscopy (AES). The corrosion resistance of the coatings was studied in several electrolytic solutions (0.5 M H2SO4, 1 M HCl, 0.75 M NaCl) using electrochemical techniques (open circuit potential, cyclovoltammetry and potentiodynamic polarization). The obtained results showed, in most of the cases, an improvement of the corrosion resistance, except in NaCl solutions. The effect of the controlled thickness of TiN and Cr layers as well as the additional treatment with a high-current electron beam was also investigated. Nuclear reaction analysis (NRA), Rutherford backscattering spectroscopy (RBS) and scanning electron microscopy (SEM) were applied for the characterization of the samples before and after the corrosion experiments.  相似文献   

16.
Surface phenomena of HA/TiN coatings on the nanotubular-structured beta Ti-29Nb-5Zr alloy for biomaterials have been investigated by several experimental methods. The nanotubular structure was formed by anodizing the Ti-29Nb-5Zr alloy in 1 M H3PO4 electrolytes with 1.0 wt.% NaF at room temperature. Hydroxyapatite (HA)/titanium nitride (TiN) films were deposited on Ti-29Nb-5Zr alloy specimens using a magnetron sputtering system. The HA target was made of human tooth-ash by sintering at 1300 °C for 1 h, and the HA target had an average Ca/P ratio of 1.9. The HA/TiN depositions were performed, using the pure HA target, on Ti-29Nb-5Zr alloy following the initial deposition of a TiN buffer layer coating. Microstructures and nanotubular morphology of the coated alloy specimens were examined by FE-SEM, EDX, XRD, and XPS. The Ti-29Nb-5Zr alloy substrate had small grain size and preferred orientation along the drawing direction. The HA/TiN coating was stable with a uniform morphology at the tips of the nanotubes.  相似文献   

17.
《Physics letters. A》2020,384(24):126452
Mg-Al layered double hydroxides/micro-arc oxidation (Mg-Al LDHs/MAO) composite coating on AZ31 magnesium alloy is fabricated by hydrothermal treatment. Corrosion system is described by ideal equivalent circuit, in which each layer or interface is regarded as the corresponding electronic component. The optimal equivalent circuit is determined by the minimum total error area of electrical parameters. Error areas of phase angle and modulus for experimental and fitting data are calculated for the selected four different kinds of circuit models such as EC1, EC2, EC3 and EC4. The results show that circuit model EC2 is the best because its total error is 1/2, 2/19 and 1/15 of error values for other three kinds of circuit models, respectively. This work reveals that the optimal equivalent electrical circuit can well reflect corrosion system of Mg-Al LDHs/MAO composite coating with the help of electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM).  相似文献   

18.
TiN和Ti1-xSixNy薄膜的微观结构分析   总被引:2,自引:0,他引:2       下载免费PDF全文
使用x射线衍射(XRD)、x射线光电子谱(XPS)、高分辨透射电子显微镜(HRTEM)和原子力显微镜(AFM)多种观测手段分析了TiN薄膜和Ti1-xSixNy纳米复合薄膜的微观结构.实验分析证明Ti1-xSixNy薄膜是由直径为3—5nm的纳米晶TiN和非晶Si3N4相构成,并且Ti1-xSix关键词: 纳米复合薄膜 自由能 表面粗糙度 TiN 1-xSixNy')" href="#">Ti1-xSixNy  相似文献   

19.
The main purpose of this study is to develop trivalent chromium, Cr(III), conversion coatings on aluminum alloys. The influence of Cr(III) concentration and immersion time on structures and anticorrosive performance of the coatings has been investigated. Corrosion behaviors of the coatings were evaluated in a 0.5 M H2SO4 aqueous solution at room temperature using potentiodynamic polarization. The structure and valence state of the coatings were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The addition of Cr(III) ions to the conversion bath considerably changes structures and compositions of the coatings. The coatings with Cr oxides possess a denser and thinner structure. Moreover, the corrosion resistance of Cr(III) coatings tends to decline with increasing immersion time due to the dissolution of coatings in the dipping period. According to XPS analysis, the Cr(III) conversion coatings are composed of Cr2O3, Cr(OH)3, Al2O3, Al(OH)3, ZrO2, Zr(OH)4, AlF3, and ZrF4, but no hexavalent chromium component in the coatings. The result indicates that the coatings prepared in the solution with 0.01 M Cr(III) for 5 min have the smoothest and densest structure and the best anticorrosive performance among all of conversion coatings in this work.  相似文献   

20.
Electroless silver deposition onto p-silicon (1 1 1) from 0.005 mol l−1 AgNO3 solutions with different HF concentration was investigated by using an electrochemical direct current polarization method and open circuit potential-time (Ocp-t) technique. The fact that three-dimensional (3D) growth of silver onto silicon is favored with increasing the HF concentration was ascribed to the drop of the surface energy and approved by electrochemical direct current polarization, Ocp-t technique and atomic force microscopy (AFM). The drop slope of open-circuit potential, K−ΔE(OCP)/t, was educed from the mixed-potential theory. K−ΔE(OCP)/t as well as the deposition rate determined by an inductively coupled plasma atomic emission spectrometry (ICP-AES), increased with the HF concentration, yet was not a linear function. Results were explained by the stress generation and relaxation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号