首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
On the basis of the method of matched asymptotic expansions, the problem of the outflow of a nonswirling axisymmetric laminar jet from a hole in a plane is solved for large Reynolds numbers. Since directly matching the leading terms of the asymptotic expansions for the axial boundary layer and the main flow region is impossible, the problem is solved by introducing an intermediate region. In the axial region the solution is the Schlichting solution [1] for an axisymmetric jet in the boundary-layer approximation, in the intermediate region the solution is found analytically, and in the main flow region the problem is reduced to that of viscous flow induced by a sink line in the presence of a transverse wall [2].  相似文献   

2.
The problem of the viscous interaction between a flow induced by a vortex filament and an orthogonal rigid surface is solved for high Reynolds numbers using the method of matched asymptotic expansions. In view of the impossibility of matching the principal terms of the asymptotic expansions directly for the near-axial boundary layer and the main flow zone, the solution is obtained by introducing two intermediate zones. In this case a logarithmic singularity of the axial velocity arises inevitably on the vortex filament. In the near-axial and intermediate zones the solution is obtained numerically and analytically, respectively, while in the main zone the problem reduces to the problem of the flow induced by a line of weakly swirled vortex-sinks.  相似文献   

3.
Numerical algorithms are presented which combine spectral expansions on elemental subdomains with boundary integral formulations for solving viscous flow problems. Three distinct algorithms are described. The first demonstrates the use of spectral elements for the classic boundary integral method for steady Stokes flow. The second extends this algorithm to include domain integrals for solution of the unsteady Navier-Stokes equations. The third algorithm explores the use of boundary integrals as a means of consolidating uncoupled elemental solutions in a domain decomposition approach. Numerical results demonstrating high-order convergence are presented in each case.  相似文献   

4.
Ghanem  R.  Dham  S. 《Transport in Porous Media》1998,32(3):239-262
This study is concerned with developing a two-dimensional multiphase model that simulates the movement of NAPL in heterogeneous aquifers. Heterogeneity is dealt with in a probabilistic sense by modeling the intrinsic permeability of the porous medium as a stochastic process. The deterministic finite element method is used to spatially discretize the multiphase flow equations. The intrinsic permeability is represented in the model via its Karhunen–Loeve expansion. This is a computationally expedient representation of stochastic processes by means of a discrete set of random variables. Further, the nodal unknowns, water phase saturations and water phase pressures, are represented by their stochastic spectral expansions. This representation involves an orthogonal basis in the space of random variables. The basis consists of orthogonal polynomial chaoses of consecutive orders. The relative permeabilities of water and oil phases, and the capillary pressure are expanded in the same manner, as well. For these variables, the set of deterministic coefficients multiplying the basis in their expansions is evaluated based on constitutive relationships expressing the relative permeabilities and the capillary pressure as functions of the water phase saturations. The implementation of the various expansions into the multiphase flow equations results in the formulation of discretized stochastic differential equations that can be solved for the deterministic coefficients appearing in the expansions representing the unknowns. This method allows the computation of the probability distribution functions of the unknowns for any point in the spatial domain of the problem at any instant in time. The spectral formulation of the stochastic finite element method used herein has received wide acceptance as a comprehensive framework for problems involving random media. This paper provides the application of this formalism to the problem of two-phase flow in a random porous medium.  相似文献   

5.
Homogenization relations, linking a material's properties at the mesoscale to those at the macroscale, are fundamental tools for design and analysis of microstructure. Recent advances in this field have successfully applied spectral techniques to Kroner-type perturbation expansions for polycrystalline and composite materials to provide efficient inverse relations for materials design. These expansions have been termed ‘weak-contrast’ expansions due to the conditionally convergent integrals, and the reliance upon only small perturbations from the reference property. In 1955, Brown suggested a different expansion for electrical conductivity that resulted in absolutely convergent integrals. Torquato subsequently applied the method to elasticity, with good results even for high-contrast materials; thus it is commonly referred to as a ‘strong contrast’ expansion. The methodology has been applied to elasticity for two phases of isotropic material, generally assuming macroscopic isotropy (with noted exceptions), thus resulting in a rather elegant form of the solution.

More recently, a multi-phase form of the solution was developed for conductivity. This paper builds upon this result to apply the method to elasticity of polycrystalline materials with both local and global anisotropy. New spectral formulations are subsequently developed for both the weak and strong contrast solutions. These form the basis for efficient microstructure analysis using these frameworks, and subsequently for inverse design applications. The process is taken through to demonstration of a property closure, which acts as the basis for materials design; the closure delineates the envelope of all physically realizable property combinations for the chosen properties, based on the particular homogenization relation being used.  相似文献   


6.
In this study we use the method of matched asymptotic expansions to obtain an approximate solution of the problem of the nonstationary motion of a lifting surface near a solid wall. The region of flow is provisionally subdivided into characteristic zones, in which, using the appropriate coordinates, we construct asymptotic expansions for the velocity potential, which thereafter coalesce in the regions of common validity. In the first approximation (extremely small heights of flight) the problem reduces to the solution of a Poisson equation in a plane region bounded by the contour of the wing in the horizontal plane with boundary conditions established from the coalescence.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 115–124, November–December, 1977.  相似文献   

7.
This paper is concerned with the problem of obtaining higher approximations for the free convection from a heated vertical flat plate to that represented by the well known solution of Schmidt and Beckmann. For large Grashof number, the perturbation problem is a singular one and the method of matched asymptotic expansions is used to construct inner and outer expansions for the velocity and temperature distributions. The small perturbation parameterε is the inverse of the fourth root of the Grashof number and the expansions are shown to involve only integral powers ofε. The first three terms in the expansion are calculated and numerical results are presented for the velocity, temperature, skin friction and heat transfer. The agreement with experiment is found to be excellent, and the theory fully explains the discrepancies which exist between boundary layer theory and experiment.  相似文献   

8.
The torsional problem of a finite elastic cylinder with a circumferential edge crack is studied in this paper. An efficient solution to the problem is achieved by using a new form of regularization applied to dual Dini series equations. Unlike the Srivastav approach, this regularization transforms dual equations into a Fredholm integral equation of the second kind given on the crack surface. Hence, exact asymptotic expansions of the Fredholm equation solution, the stress intensity factor and the torque are derived for the case of a shallow crack. The asymptotic expansions are certain power-logarithmic series of the normalized crack depth. Coefficients of these series are found from recurrent relations. Calculations for a shallow crack manifest that the stress intensity factor exhibits the rather weak dependence upon the cylinder length when the torque is fixed and the triple length is larger than the diameter.  相似文献   

9.
The problem of simulation of the stress-strain state in SiGe island heterostructures is considered. The analytic-numerical method of multipole expansions is used to obtain an approximate solution. The problem of the stressed state influence on the diffusion mobility of atoms adsorbed on the heterostructure free surface is also discussed.  相似文献   

10.
In this paper, we develop reduced models to approximate the solution of the electromagnetic scattering problem in an unbounded domain which contains a small perfectly conducting sphere. Our approach is based on the method of matched asymptotic expansions. This method consists in defining an approximate solution using multi-scale expansions over outer and inner fields related in a matching area. We make explicit the asymptotics up to the second order of approximation for the inner expansion and up to the fifth order for the outer expansion. We validate the results with numerical experiments which illustrate theoretical orders of convergence for the asymptotic models requiring negligible computational cost.  相似文献   

11.
An asymptotic solution is obtained to the contact problem of a band-like punch acting upon an elastic half-space. The method of joined asymptotic expansions is used. The results of numerical calculations are presented. The efficiency of the approach is tested by comparing it with another method  相似文献   

12.
An analytical model for the boundary-layer of torsion in a piezoelectric thin plate with a symmetry of order six is proposed on the basis of the method of asymptotic expansions. The local behaviour of the three-dimensional solution of the problem of linear piezoelectricity is formulated in the vicinity of the lateral contour of the plate, and the solution of the problem for the boundary-layer of torsion is then obtained. However, we denote that full proof of the theorems is not given in this paper. Only hints of the proof are given.  相似文献   

13.
Plate equations for a plate consisting of one elastic layer and one piezoelectric layer with an applied electric voltage have previously been derived by use of power series expansions of the field variables in the thickness coordinate. These plate equations are here evaluated by the consideration of a time harmonic 2D vibration problem with finite layers. The boundary conditions at the sides of the layers then have to be considered. Numerical comparisons of the displacement field are made with solutions from two other theories; a solution with equivalent boundary conditions for a thin piezoelectric layer applied on an elastic plate and an exact solution based on Fourier series expansions. The two approximate theories are shown to be equally good and they both yield accurate results for low frequencies and thin plates.  相似文献   

14.
A spectral method for the analysis of stationary flows of second‐order fluids in rough micro‐channels is developed. The algorithm employs a fixed computational domain with the boundaries of the flow domain being located inside the computational domain. The physical boundary conditions are enforced using the immersed boundary conditions concept. The algorithm relies on the Fourier expansions in the flow direction and the Chebyshev expansions in the transverse direction. Various tests confirm spectral accuracy of the algorithm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
IntroductionThereweresomeresultsofstudyingonboundaryvalueproblemsforfunctionaldifferentialequation[1~6 ]byemployingthetoplolgicaldegreetheoryandsomefixedpointprinciplesinrecentyears.Buttheworktostudyboundaryvalueproblemsfordelaydifferentialequationwithsmallparameterbymeansofthetheoryofsingularperturbationrarelyappeared[7~11].Thereasonforitisthattheworktoconstructtheuppersolutionandlowersolutionforthecaseofdifferentialequationwithdelayisdifficult.Theauthorhasstudiedakindofboundaryvalueproblem…  相似文献   

16.
The dynamic statement of the problem on the compression of a thin ideally rigid-plastic layer by absolutely rigid plates moving at constant velocities towards each other contains two characteristic dimensionless parameters. One of them—the small geometric parameter α defined as the layer thickness-to-length ratio—explicitly depends on time, and its order of smallness with respect to the other dimensionless parameter—the time-independent reciprocal Euler number—increases with time. The second parameter is assumed to be much less than unity as well. An asymptotic integration procedure is used to construct the solutions of this problem as expansions in integer powers of α; this procedure depends on the parameter ratio, i.e., is different on different time intervals. The possibility of seeking the solution in this form is justified. It is also shown that the asymptotic expansions can be matched smoothly in time. The parameter ratio at which the correction due to inertial terms in the expression for the pressure turns out to be of the same order as the terms occurring in the classical Prandtl solution of the quasistatic problem is determined.  相似文献   

17.
We consider nonlinear wave and Klein-Gordon equations with general nonlinear terms, localized in space. Conditions are found which provide asymptotic stability of stationary solutions in local energy norms. These conditions are formulated in terms of spectral properties of the Schrödinger operator corresponding to the linearized problem. They are natural extensions to partial differential equations of the known Lyapunov condition. For the nonlinear wave equation in three-dimensional space we find asymptotic expansions, as t, of the solutions which are close enough to a stationary asymptotically stable solution.  相似文献   

18.
Summary The problem considered is that of the heat transfer occurring at the inlet to a parallel plate channel. Instead of separating variables, the energy equation is solved, after transformation, in the form of a power series. This method supplies information concerning the initial growth of the thermal boundary layer which is not obtainable by previous methods using eigen-function expansions. A sufficient number of coefficients of the series is computed to allow the present solution to be joined to the asymptotic eigen-function solution, thus completing the treatment of the problem for all values of the longitudinal variable.  相似文献   

19.
A. L. Gonor 《Fluid Dynamics》1993,28(4):468-475
A combined solution of the problem of the penetration of a compressible fluid by a slender wedge and a cone is found by the method of matched asymptotic expansions. The new solution is based on taking into account the nonlinear terms in the Cauchy-Lagrange integral and is uniformly applicable in the neighborhood of the nose.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 49–57, May–June, 1993.  相似文献   

20.
Spectral methods for analyses of steady flows in annuli bounded by walls with either axi‐symmetric or longitudinal ribs are developed. The physical boundary conditions are enforced using the immersed boundary conditions concept. In the former case, the Stokes stream function is used to eliminate pressure and to reduce system of field equations to a single fourth‐order partial differential equation. The ribs are assumed to be periodic in the axial direction and this permits representation of the solution in terms of the Fourier expansion. In the latter case, the problem is reduced to the Laplace equations for the flow modifications that can be expressed in terms of the Fourier expansions. The modal functions, which are functions of the radial coordinate, are discretized using Chebyshev polynomials. The problem formulations are closed using either the fixed volume flow rate constraint or the fixed pressure gradient constraint. Various tests have been carried out in order to demonstrate the spectral accuracy of the discretizations, as well as the spectral accuracy of the enforcement of the flow boundary conditions at the ribbed walls using the immersed boundary conditions concept. Special linear solver that takes advantage of the matrix structure has been implemented in order to reduce computational time and memory requirements. It is shown that the algorithm has superior performance when one is interested in the analysis of a large number of geometries, as part of the coefficient matrix that corresponds to the field equation is always the same and one needs to change only the part of the matrix that corresponds to the boundary relations when changing geometry of the flow domain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号