首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于X 波段源,通过9×2×2 次倍频链实现了输出约1-2mW 的320-356GHz 全固态倍频源。该信号源作为本振信 号驱动664GHz 接收前端的二次谐波混频器,该混频器采用了有源偏置技术以降低混频器的本振驱动功率和接收机的噪 声温度。仿真结果表明,混频二极管在0.3mW 本振驱动功率及0.35V 直流偏置下,在650-680GHz 带宽内,仿真得到的 单边带变频损耗小于12dB,666GHz 最小损耗为10.8dB。  相似文献   

2.
基于GaAs肖特基二极管,设计实现了310~330 GHz的接收机前端.接收机采用330 GHz分谐波混频器作为第一级电路,为降低混频器变频损耗,提高接收机灵敏度,分析讨论了反向并联混频二极管空气桥寄生电感和互感,采用去嵌入阻抗计算方法,提取了二极管的射频、本振和中频端口阻抗,实现了混频器的优化设计,提高了变频损耗仿真精度.接收机的165 GHz本振源由×6×2倍频链实现,其中六倍频采用商用有源器件,二倍频则采用GaAs肖特基二极管实现,其被反向串联安装于悬置线上,实现了偶次平衡式倍频,所设计的倍频链在165 GHz处输出约10 dBm的功率,用以驱动330 GHz接收前端混频器.接收机第二级电路采用中频低噪声放大器,以降低系统总的噪声系数.在310~330 GHz范围内,测得接收机噪声系数小于10.5 dB,在325 GHz处测得最小噪声系数为8.5 dB,系统增益为(31±1)dB.  相似文献   

3.
辐射计是一种用于测量物体热辐射的高灵敏度接收机,是被动微波遥感的主要工具。辐射计前端作为辐射计系统的重要组成部分,其性能直接影响系统的指标。本文介绍一种380GHz辐射计前端关键技术的设计,包括380GHz分谐波混频器及作为本振驱动的190GHz三倍频器。其中380GHz分谐波混频器在2.5~3.5GHz中频输出频率范围内实测变频损耗低于10d B,均值为9d B;等效噪声温度达到1300K,均值约为2000K。190GHz三倍频器已完成仿真设计,在190GHz频率点倍频效率大于25%,输出功率约18m W,在183~193GHz的频带范围内,输出功率大于5m W。  相似文献   

4.
辐射计是一种用于测量物体热辐射的高灵敏度接收机,是被动微波遥感的主要工具。辐射计前端作为辐射计系 统的重要组成部分,其性能直接影响系统的指标。本文介绍一种380GHz 辐射计前端关键技术的设计,包括380GHz 分谐 波混频器及作为本振驱动的190GHz 三倍频器。其中380GHz 分谐波混频器在2.5~3.5GHz 中频输出频率范围内实测变频 损耗低于10dB,均值为9dB;等效噪声温度达到1300K,均值约为2000K。190GHz 三倍频器已完成仿真设计,在190GHz 频率点倍频效率大于25%,输出功率约18mW,在183~193GHz 的频带范围内,输出功率大于5mW。  相似文献   

5.
基于六阳极结反向串联型砷化镓平面肖特基容性二极管,采用平衡式二倍频器结构,成功研制出一种大功率150 GHz二倍频器。使用三维电磁场与非线性谐波平衡联合仿真方法,提高了仿真结果和实际的吻合度,并根据设计结果完成倍频器的加工、装配和测试。倍频器在输出频率为146~158 GHz下的倍频效率达到7%以上;在输出频率为154 GHz时,倍频效率达到12%,输出功率达到71 mW。  相似文献   

6.
论文重点论述了固态太赫兹信号发生和接收技术,太赫兹信号发生采用倍频级联的方案,重点解决了倍频器的压缩点、驱动功率和倍频效率等三个方面的问题,实现了频率覆盖500GHz的大功率信号发生。信号接收采用了分谐波混频的方案,通过构建二极管模型,利用超薄微带电路,实现了混频电路的一体化设计,完成了宽带、低变频损耗的分谐波混频器,频率覆盖至500GHz。  相似文献   

7.
论文重点论述了固态太赫兹信号发生和接收技术,太赫兹信号发生采用倍频级联的方案,重点解决了倍频器的 压缩点、驱动功率和倍频效率等三个方面的问题,实现了频率覆盖500GHz 的大功率信号发生。信号接收采用了分谐波 混频的方案,通过构建二极管模型,利用超薄微带电路,实现了混频电路的一体化设计,完成了宽带、低变频损耗的分 谐波混频器,频率覆盖至500GHz。  相似文献   

8.
基于分立式GaAs肖特基势垒二极管,研制出了190~225 GHz高效率二倍频器.50 μm厚石英电路利用倒扣技术,实现二极管的良好散热、可靠的射频信号及直流地.通过数值分析方法,二极管非线性结采用集总端口模拟,提取二极管的嵌入阻抗,以设计阻抗匹配电路.在202 GHz,测得最高倍频效率为9.6%,当输入驱动功率为85.5 mW时,其输出功率为8.25 mW;在190~225 GHz,测得倍频效率典型值为7.5%;该二倍频器工作频带宽、效率响应曲线平坦,性能达到了国外文献报道的水平.  相似文献   

9.
何月  蒋均  缪丽  陆彬 《微波学报》2016,32(5):15-18
为了进一步降低太赫兹接收机的噪声,介绍了基于平面肖特基二极管实现低噪声太赫兹谐波混频器的方法。在建立肖特基二极管较为精确的三维模型和电气模型的前提下,引入紧凑型hammer-head 滤波器结构,同时结合低损耗石英固态电路混合集成的方法,研制了220GHz 和250GHz 太赫兹谐波混频器。测试表明:220GHz混频器在205~235GHz工作范围内最低双边带变频损耗小于6.5dB,最低噪声温度小于650K,250GHz 混频器在230~270GHz 工作范围内最低双边带变频损耗小于6.5 dB,最低噪声温度小于900K。  相似文献   

10.
基于肖特基势垒二极管三维电磁模型的220GHz三倍频器   总被引:1,自引:0,他引:1  
采用阻性肖特基势垒二极管UMS DBES105a设计了一个太赫兹三倍频器.为了提高功率容量和倍频效率,该倍频器采用反向并联二极管对结构实现平衡式倍频.根据S参数测试曲线建立了该二极管的等效电路模型并提取了模型参数.由于在太赫兹频段二极管的封装影响到电路的场分布,将传统的二极管SPICE参数直接应用于太赫兹频段的电路设计存在一定缺陷,因此还建立了二极管的三维电磁模型.基于该模型研制出的220 GHz三倍频器最大输出功率为1.7 mW,最小倍频损耗为17.5 dB,在223.5 GHz~237 GHz输出频率范围内,倍频损耗小于22 dB.  相似文献   

11.
为了缓解微波频段频谱资源的日益紧张,对太赫兹频段进行探索,介绍了一款基于GaAs肖特基二极管的330 GHz次谐波混频器。设计采用了整体综合设计的方法,进行高频结构模拟器(HFSS)与先进设计系统(ADS)联合仿真。优化过程中,电路不连续性通过HFSS仿真结果表征,电路传输特性和二极管非线性特性由ADS仿真结果表征,通过优化传输线参数,实现优化电路的目的。此方法增大了仿真优化空间,降低了设计难度。仿真结果显示,在300~350 GHz频段内,混频器的变频损耗小于8 dB。  相似文献   

12.
胡南 《红外与激光工程》2019,48(2):225002-0225002(4)
基于四阳极结同向串联型GaAs平面肖特基二极管,设计并实现了无基片空间合成的220 GHz三次倍频电路。采用四支肖特基二极管协同工作,在脊波导小片上下两侧各倒装焊接两支肖特基二极管,构成上下反向结构。采用场路结合的方式,对倍频电路的倍频效率进行了仿真。仿真结果显示输入功率为300 mW,输出频率为213~229 GHz时,倍频效率大于3%;采用E波段功率放大器推动三次倍频电路,获得了倍频器输出功率。测试数据表明,驱动功率为300 mW时,输出频率为213~229 GHz时,输出功率大于5 dBm,倍频效率为1%~2%。  相似文献   

13.
基于中国电子科技集团公司第十三研究所的反向并联肖特基二极管,采用电磁场和电路软件联合仿真,完成了0.22 THz分谐波混频电路设计。在固定中频输出频率10 MHz的条件下测试了混频电路的变频损耗,在175~235 GHz共60 GHz带宽内双边带变频损耗小于15 dB,在196 GHz处最佳变频损耗为8.5 dB。测试结果与仿真结果趋势吻合良好。基于冷热负载,测试了分谐波混频电路的噪声温度,当本振功率为5.7 mW时,在216 GHz处双边带噪声温度为1 200 K。  相似文献   

14.
为满足星载辐射计系统应用,提出了一款220 GHz次谐波混频器。基于平面GaAs肖特基二极管3D电磁模型,混频器电路和结构优化设计采用HFSS和ADS联合仿真实现。通过在50μm厚的石英基板上倒装反向并联二极管对以及采用纳米银胶将基板粘接在硅铝波导腔的工艺方式,设计并加工实现了一款210~240 GHz分谐波混频器,单边带最小变频损耗仿真结果为7.33 dB,实测变频损耗优于9.6 dB。按照某卫星规定的各项环境试验条件验证其在不同环境条件下的性能,结果证明该混频器试验前后一致性较好。  相似文献   

15.
采用电磁场和电路联合仿真,基于直流测试和三维电磁建模仿真技术,建立了截止频率5 THz的混频肖特基二极管的等效电路模型。重点研究了二极管的非线性结模型和外围结构三维电磁全波仿真模型,构建了考虑实际电路形式的四端口三维电磁全波仿真模型。该等效电路模型可用于太赫兹低频段混频模块设计,该模型的建立方法也为更高频段模型的建立提供了一种参考。基于该模型设计了一款220 GHz分谐波混频器,在192~230 GHz宽带范围内,双边带变频损耗小于10 dB,测试结果与仿真结果较为一致。  相似文献   

16.
廉宇轩  冯伟  丁青峰  朱一帆  孙建东  秦华  程凯 《红外与激光工程》2021,50(5):20210202-1-20210202-8
利用天线耦合AlGaN/GaN HEMT太赫兹探测器的自混频和外差混频效应,分别设计并测试了340 GHz频段直接检波式和外差混频式接收机前端。通过接收机信噪比的测量和接收功率的定标,得到了两种接收机的等效噪声功率。直接检波模式下探测器的响应度约为20 mA/W,直接检波模式和外差混频模式下接收机的等效噪声功率分别约为?64.6 dBm/Hz1/2和?114.79 dBm/Hz。在相同的载波功率和接收信号带宽条件下,当本振太赫兹波功率大于?7 dBm时,外差混频接收的信噪比优于直接检波的信噪比。当本振功率大于0 dBm时,外差混频接收机表现出优良的解调特性,其信噪比高出直接检波接收机的信噪比10 dB以上。  相似文献   

17.
基于南京电子器件研究所(NEDI)的GaAs工艺线,通过分析器件的有源层(缓冲层、外延层)材料掺杂浓度和厚度、肖特基接触面积等,综合优化二极管性能,研制出了截止频率为3.2 THz的太赫兹变阻二极管.基于该二极管,通过建立其三维场结构,采用电磁场和电路仿真软件相结合的方法,一体化设计匹配电路和器件,研制出了D波段和G波段倍频源.D波段二倍频器在152.6 GHz测得最高倍频效率为2.7%,在147.4~155 GHz效率典型值为1.3%.G波段二倍频器在172 GHz测得最高倍频效率为2.1%,在150~200 GHz效率典型值为1.0%.  相似文献   

18.
随着太赫兹技术的应用和发展,对大功率太赫兹固态源的需求愈加迫切。文中基于GaN肖特基二极管(SBD)工艺设计并制造了具有高功率输出的170 GHz和340 GHz太赫兹倍频器,实现了340 GHz大功率太赫兹固态倍频链。采用多管芯GaN SBD提高器件功率承载能力,综合开展电路优化设计提升倍频性能,通过仿真研究和实验测试,验证了倍频器设计的有效性和先进性。170 GHz倍频器的实测峰值输出功率达到580 mW,倍频效率为14.5%。340 GHz倍频器的实测峰值输出功率为66 mW,倍频效率为12.5%。该太赫兹固态倍频链性能优良,在太赫兹系统中具有重要的应用价值。  相似文献   

19.
<正> 南京电子器件研究所已研制成3mm GaAs肖特基势垒混频二极管,其使用频率可达100GHz以上。混频管使用频率愈高,要求结电容C_j愈小。本器件C_j设计值为0.007pF(考虑边缘效应)。如此小的结电容必须通过减小势垒结直径来获得,而小的结直径将增加非线性电导固有变频损耗,增大串联电阻。 为降低器件的噪声温度比和变频损耗,提高高频优值,需要获得近乎理想的肖特基势垒,使理想因子n趋近于1,同时最大限度地降低串联电阻Rs,使Rs和C_j的乘积减至最小。因此适当提高GaAs外延层浓度,在满足击穿电压和烧毁的前提下,减薄外延层总厚度,提高外延层浓度的分布陡度以减小串联电阻Rs。  相似文献   

20.
340 GHz基于肖特基二极管未匹配电路倍频源   总被引:1,自引:5,他引:1       下载免费PDF全文
太赫兹技术是一个新兴的交叉研究领域。在过去20 年,太赫兹技术有了巨大的发展。倍频器是太赫兹差分接收机重要技术,主要运用在天文、大气和行星科学射频前端。太赫兹空白的存在主要因素是缺少高效太赫兹源和探测器。通过倍频器技术和放大技术,可以得到高稳定低相噪的倍频源。340 GHz 是太赫兹大气传输窗口之一,所以340 GHz 倍频源能够运用在各种通信成像系统中。肖特基二极管倍频源可以工作在常温和低温下。倍频器是倍频链路最关键的部分。通过理论分析和3D 电磁仿真设计了一个340 GHz 倍频器。实验得到最大输出功率为4.8 dBm,最大效率为3%,在331~354.5 GHz输出功率大于0 dBm。实验结果证明电路仿真和建模的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号