首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large basis set ab initio calculations at correlated levels, including MP2, single reference, as well as multireference configuration interaction, carried out on the methane potential energy surface, have located and characterized a transition structure for stereomutation (one imaginary frequency). This structure is best described as a pyramidal complex between singlet methylene and a side-on hydrogen molecule with Cs symmetry. At the single reference CI level, it lies 105 kcal/mol above the methane Td-ground state but is stable relative to dissociation into CH2(1A1) and H2 by 13 kcal/mol at 0 K (with harmonic zero point energy (ZPE) corrections for all structures). Dissociation of the transition state into triplet methylene and hydrogen also is endothermic (by 4 kcal/mol), but single bond rupture to give CH and H. is 3 kcal/mol exothermic. Thus, it does not appear likely that methane can undergo stereomutation classically beneath the dissociation limit. Confirming earlier conclusions, side-on insertion of 1A1 CH2 into H2 in a perpendicular geometry occurs without activation energy. Planar (D4h) methane (130.5 kcal/mol) has four imaginary frequencies. Two of these are degenerate and lead to equivalent planar C2v structures with one three-center, two-electron bond and two two-electron bonds and two imaginary frequencies. The remaining imaginary frequencies of the D4h form lead to tetrahedral (Td) and pyramidal (C4v) methane. The latter has three negative eigenvalues in the force-constant matrix; one of these leads to the Td global minimum and the other to the Cs (parallel) stereomutation transition structure. Multireference CI calculations with a large atomic natural orbitals basis set produce similar results, with the electronic energy of the Cs stereomutation transition state 0.7 ± 0.5 kcal/mol higher than that of CH + H. dissociation products, and a ZPE-corrected energy which is 5 ± 1 kcal/mol higher. Also considered are photochemical pathways for stereomutation and the possible effects of nuclear spin, inversion tunneling, and the parity-violating weak nuclear interaction on the possibility of an experimental detection of stereomutation in methane. © 1995 by John Wiley & Sons, Inc.  相似文献   

2.
The geometrical parameters, force constants, and vibrational spectra of the C2v configuration of the Sc(MDA)3 molecule were calculated in terms of second-order Möller–Plesset perturbation theory with inclusion of electron correlation. Calculations were carried out using effective pseudopotentials (for describing atomic cores) and double-zeta valence basis sets complemented with polarization functions. The C2v structure corresponds to the first-order saddle point on the potential energy surface (PES) of the ground electronic state. The results of our previous calculations for D3 and D3h configurations were used to show that the C2v and D3h structures are the transition states of two intramolecular rearrangements, describing transitions between the PES minima corresponding to different equivalent geometrical D3 configurations of metal -diketonate tris-complexes. In Sc(MDA)3, the rearrangement that occurs via the C2v configuration is energetically (9.4 kJ/mole) more favorable.  相似文献   

3.
At high levels of ab initio theory (6-31G*//4-31G), the most stable C4H isomer is indicated to be the nonplanar cyclobutadiene dication ( 1a ); the planar form, 1b , is indicated to be 7.5 kcal/mol less stable. The second most stable C4H isomer, the methylenecyclopropene dication, is indicated to prefer the perpendicular ( 2a ) over the planar ( 2b ) arrangement by 7 kcal/mol. The “anti van't Hoff” cyclo-(HB)2C?CH2 system ( 4 ), isoelectronic with 2 , also prefers the perpendicular conformation ( 4a ), and retains the C?C double bond. The linear butatriene dication ( 3 ) is the least stable C4H species investigated. The perpendicular (D2d) arrangement ( 3a ), permitting double allyl cationlike conjugation, is preferred over the planar D2h form ( 3b ) by 26 kcal/mol. The heat of formation of the most stable form of C4H, 1a , is estimated to be 623–640 kcal/mol. This species should be thermodynamically stable toward dissociation into smaller charged fragments.  相似文献   

4.
MM3 (version 1992, ?=3.0) was used to study the ring conformations of d-xylopyranose, d-lyxopyranose and d-arabinopyranose. The energy surfaces exhibit low-energy regions corresponding to chair and skew forms with high-energy barriers between these regions corresponding to envelope and half-chair forms. The lowest energy conformer is 4 C 1 for α- and β-xylopyranose and α- and β-lyxopyranose, and the lowest energy conformer is 1 C 4 for α- and β-arabinopyranose. Only α-lyxopyranose exhibits a secondary low-energy region (1 C 4) within 1 kcal/mol of its global minimum. Overall, the results are in good agreement with NMR and crystallographic results. For many of these molecules, skew conformations are found with relatively low energies (2.5 to 4 kcal/mol above lowest energy chair form). The 2 S O and 1 C 4 conformers of crystalline benzoyl derivatives of xylopyranose are in secondary low-energy regions on the β-xylopyranose surface, within 3.8 kcal/mol of the global 4 C 1 minimum.  相似文献   

5.
Two possible mechanisms for substitution reactions in octahedral complexes, ML6, are discussed in terms of molecular orbital theory. Jorgensen's model with angular parameters is used to calculate the change in activation energy on forming complexes of the type ML5 (D3h symmetry), ML5 (C4v symmetry), and ML7 D5h symmetry). Analysis of the quantities obtained (Table 4) shows that high spin ML6 octahedral complexes of metals with d3 or d8 electronic configurations, and low spin complexes with d6 electronic configurations are particularly stable. An SN1 mechanism is, apparently, characteristic for complexes of metals with d1 or d2 electronic configurations. The formation of bonds facilitates the course of substitution reactions in octahedral complexes. The results we have obtained explain the available experimental material and permit us to make some predictions.  相似文献   

6.
Zusammenfassung Die Infrarot- und die Raman-Spektren der Silylamine (CH3)3Si–NH–R (R=CH3, C2H5 und C6H5) sowie der analogen N-deuterierten Verbindungen werden mitgeteilt und analysiert. Starke Kopplungen führen zu einer Mischung vonv SiN bei etwa 700 cm–1 mit anderen Schwingungen des C3Si–NHR-Skelettes.
The Infrared and Raman spectra of the silylamino compounds (CH3)3Si–NH–R (R=CH3, C2H5, and C6H5) and the analogous N-deuterated species are reported and assigned. The SiN stretching mode at about 700 cm–1 is strongly coupled with other vibrations of the molecules.
  相似文献   

7.
The bonding of acetylene to copper atom, dimer, and trimer was investigated with a Kohn–Sham density functional approach. Full geometry optimization yielded the equilibrium structures of various CunC2H2 species. Gradient corrections were included in the calculation of binding energies (BE ). The Cu—C2H2 complex was found to have a Cs structure and a BE of 10 kcal/mol. Three isomers of Cu2C2H2 have similar total energies: a C2v end-bonded structure with a BE of 18 kcal/mol, and two 1,2-dicupro ethylene isomers—a cis form with a BE of 12 kcal/mol and a trans form with a BE of 15 kcal/mol. Two stable C2v isomers of Cu3C2H2 were found. In both isomers, the Cu3 ring relaxes from its isosceles structure, with two short bonds (2.247 Å) and one long bond (2.478 Å), and adopts a nearly equilateral geometry. In one isomer of Cu3C2H2, the acetylene is bonded to one apex of the Cu3 ring with a BE of 29 kcal/mol. In the other, it is bonded to two copper atoms of one side of the Cu3 ring with a BE of 33 kcal/mol. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The geometrical structure and conformation of dimethyloxalate, CH3OC(O)–C(O)OCH3, have been studied by gas electron diffraction (GED) and quantum-chemical calculations (MP2 and B3LYP methods with 6-31G* and cc-pVTZ basis sets). The GED analysis with a dynamic model (T = 323 K) results in a mixture of two planar conformers, anti (C2h symmetry) and syn (C2v symmetry) orientation of the two C=O bonds. The energy difference between these conformers is 0.02(0.18) kcal/mol and barrier to internal rotation around the C–C bond is 0.44(0.41) kcal/mol. The CH3 groups occupy synperiplanar positions with respect to the C=O bonds. The following main geometrical parameters for the anti conformer (Å and degrees) have been derived: rg(C–C) = 1.532(3), rg(C=O) = 1.203(2), rg(Csp3–O) = 1.436(3), rg(Csp2–O) = 1.333(3), (Csp2–Csp2–O) = 111.9(1.9), (Csp2–O–Csp3) = 116.3(1.6), (O–C= O) = 127.0(1.8).This paper is devoted to the 75th anniversary of gas electron diffraction method.  相似文献   

9.
Ab initio calculations at the 4-31G level are carried out on the species SiHn (n = 0 to 4) and the corresponding ions. SiH+4 is found to distort from Td to D2d. C2v, and C3v, with the latter structure being the lowest in energy by 11 kcal/mole. Consistent with experimental mass spectroscopy, SiH+4 is found to be much less stable to dissociation than CH+4.  相似文献   

10.
Ab initio calculations have been carried out for the ground state of H 5 + in order to predict its equilibrium geometry, binding energy, enthalpy of formation, and the features of the H2 · H 3 + interaction at large and intermediate intermolecular distances. The extended basis set of Gaussian functions was carefully optimized to describe the various kinds of intermolecular interactions. Electron correlation was accounted for by means of CI calculations. Different from previous studies we find a D 2d equilibrium geometry with D e = 7.4 kcal/mol and H 300 0 –8.7 kcal/mol. The potential surface turns out to be extremely shallow in the vicinity of the D 2d structure which results in a great mobility of the central nucleus at room temperature.  相似文献   

11.
The structural parameters of tin(II) phthalocyaninate PcSn and tin(IV) bis-phthalocyaninate Pc2Sn as well as of their cations are determined by B3LYP/SDD and PBE0/SDD quantum chemical methods. The PcSn molecule is characterized by C4v symmetry, and SnN bond lengths are 2.307/2.299 ? (B3LYP/PBE0). The Sn nucleus is by 1.11 ? (B3LYP, PBE0, single crystal X-ray diffraction analysis) higher than the plane of four neighboring nitrogen nuclei. The “hindered” configuration (D 4d symmetry) with a high (27–30 kcal/mole) internal rotation barrier corresponds to the Pc2Sn energy minimum. The calculated equilibrium lengths of eight equivalent SnN bonds of 2.366/2.347 (B3LYP/PBE0) are similar to the average SnN bond length of 2.347 ? (single crystal X-ray diffraction). Vertical and adiabatic ionization potentials are calculated: Iv 6.40/6.48 eV, IA 6.38/6.45 eV for PcSn and Iv 5.63/5.66 eV, IA 5.60/5.63 eV for Pc2Sn.  相似文献   

12.
Measurements of the D(R? NO) bond strength in some C-nitrosocompounds have been made using an electron impact method. The appearance potential of the radical ion (R+) has been determined, the D(R? NO) bond energy being obtained from the relation The values obtained are: D(C6H5? NO) = 41 kcal/mole, D(t-C4H9? NO) = 34 kcal/mole, D(t-C5H11? NO) = 36 kcal/mole and D(i-C3H7? NO) = 36.5 kcal/mole. These values are in good agreement with the numerous estimations of Benson and coworkers and confirm that the C? N bond strength in C-nitrosocompounds is very much less than in nitrocompounds or in amines.  相似文献   

13.
The splitting of d orbitals in an electrostatic field due to a cyclopentadienyl ring and four ligands arranged at the corners of a square is investigated. It is shown that, although the symmetry of the molecule is C s, the effective symmetry for the d 1 and d 2 systems is G 4v. The linear combinations for the d 2 system in C 1v symmetry are given and the matrix elements for the secular determinant are listed. The results may be applied to a discussion of the bonding in tricarbonyl--cyclopentadienylethyl-molybdenum, whose structure is related to the idealized model considered.
Zusammenfassung Bei der Aufspaltung der d-ZustÄnde in einem elektrostatischen Feld, welches erstens von einem Cyclopentadienyl-Ring und zweitens von vier an den Ecken eines Quadrates angeordneten Liganden hervorgerufen wird, ist die effektive Symmetrie D 4v — trotz der C s-Symmetrie des Moleküls. Für das d 2-System werden die Linearkombinationen der Slaterdeterminanten und die Elemente der Störmatrix angegeben. Das Ganze lÄ\t sich z. B. auf die Diskussion von Tricarbonyl--cyclopentadienylÄthylmolybdÄn anwenden, dessen Struktur der des behandelten Modells sehr Ähnlich ist.

Résumé La décomposition des orbitales d dans le champ d'un groupe cyclopentadiényl et de quatre ligandes arrangés en carré est étudiée. Pour les systèmes d 1 et d 2, la symétrie effective est C 4v , celle de la molécule n'étant que C s. Pour d 2, on donne les combinaisons linéaires adapté à la symétrie C 4v , et la matrice des énergie perturbatrices. Les résultats s'appliquent à la discussion du cyclopentadiényl-éthyl-molybdène tricarbonyle dont la structure ressemble le modèle étudié.


On leave from: Institut Rudjer Bokovi, Zagreb, Yugoslavia  相似文献   

14.
The lowest-energy N4 is computed ab initio to be the planar C2h(3Bu) open-chain structure 13 . The open-chain N4 singlet-state structures dissociate on geometry optimization. The tetraazatetrahedrane Td structure 1 and the tetrazete D2h structure 2 are minima at MP 2/6-31G *. However, both are higher in energy than 13 (24.1 and 21.2 Kcal/mol [UQCISD ) (T )(full)/6-311+G *//MP 2/6-31G * + ZPE (MP 2/6-31G )*, respectively]. The energy of 13 is 157.5 kcal/mol higher than that of two N2(1∑ molecules [UQCISD (T )(Full)/6-311+G *//MP 2/6-31G *] © 1993 John Wiley & Sons, Inc.  相似文献   

15.
The nonintercalative binding of an aliphatic and an aromatic bisguanylhydrazone (BGH) to the minor groove of double-stranded (dA-dT) n oligomers is investigated by means of theoretical computations. The preferred binding arrangements of both BGHs are stabilized by a number of H-bonding interactions with sites O2(T), N3(A) and o1 on the two strands, and require limited conformational rearrangements of the BGHs around their C-C single bonds. The intermolecular interaction energy is larger with the aliphatic BGH than with the aromatic one. The energy difference is, however, considerably reduced when the oligomer is lengthened: it passes from 16.1 kcal/mole at the heptamer level, to 7.9 kcal/mole at the undecamer level and to 4.6 kcal/mole when each strand of the undecamer is flanked with a complementary complete helical turn of phosphates, on both the 3 and 5 termini.The interaction energies of the BGHs with water molecules in the first hydration shell are, however, also larger with the aliphatic BGH, than with the aromatic BGH. This energy difference is further enhanced when one considers also the water molecules in the second shell. It becomes greater than the difference in the interaction energy of the two BGHs with (dA-dT) n for large values of n. When the dehydration energy of BGHs is taken into account the overall energy balance is then more favorable for the interaction of the aromatic than of the aliphatic BGH with the polynucleotide. This last conclusion is in agreement with experimental results.  相似文献   

16.
The least-energy dissociation path of the ground state of CH2N2 was determined fromab initio calculations using in a complementary way basis sets of minimal size (STO-3G) and double-zeta (DZ) quality. The results indicate that the least-energy point of attack of the N2 molecule on CH2 (1 A 1) is roughly perpendicular to the molecular plane (93 °), the C and N atoms being almost co-linear (angle C-N-N203 ° with outermost N atom pointing away from CH2). The potential barrier of 1.2 eV found previously on theC 2v dissociation path, disappears completely along the least-energy dissociation path (point groupC s (out-of-plane)). These findings corroborate the Woodward-Hoffman rules for this process since the outermost orbitals of the two intersecting states found in point groupC 2v (...2b 1 and ...8a 1) both correlate to the same irreducible representation (10á) in point groupC s (out-of-plane).Larger basis set calculations (DZ + polarization functions on all centers, 3d c and 3d N developed here), were also carried out on CH2N2 (1 A 1,3 A 2 and1 A 2) at the1 A 1 equilibrium geometry and on CH2 (3 B 1) and N2 (1 g + ) at their respective equilibrium geometries. These calculations, together with consideration of correlation energy differences, yieldD 0 0 (CH2N2,1 A 1) = 19 kcal/mole and vertical excitation energies of 67 and 73 kcal/mole for the3 A 2 and1 A 2 states respectively. The latter value is in good agreement with the measured experimental value: 72.4 kcal/mole corresponding to the maximum of intensity in the1 A 21 A 1 absorption band.  相似文献   

17.
An explicit mechanism is described for the anomalous increase in dielectric constant and dielectric loss at low frequencies and high temperatures for poly(vinylidene fluoride) containing ionic impurities. Relations are proposed for the ionic contributions, εi″ and εi″, to the dielectric constant and dielectric loss: where v0 and D0 are the concentration and the diffusion coefficient of the mobile ions at infinite temperature, q is the charge of an ion (in cgs electrostatic units), l is the distance between electrodes, k is the Boltzmann constant, T is the absolute temperature, Ed is the apparent activation energy for diffusion of the ions, and W is the dissociation energy of the ionic impurities. From the slopes of curves of log εT′ versus 1/T and log ε″T versus 1/T for poly(vinylidene fluoride), energies Ed = 34 kcal/mole and W = 342 kcal/mole were obtained.  相似文献   

18.
Perturbation theory proves to be a powerful approach to obtain in analytic form both vibration-rotational energies and matrix elements of the dipole moment of diatomic molecules in terms of the expansion parameter = 2B e/gwe,B e and e being, respectively, the equilibrium rotational and harmonic vibrational spectral parameters. A systematic and efficient algorithm has been developed to execute such calculations with sufficient accuracy for most physical applications when the potential-energy function is accurately represented in the Dunham form. The method also provides analytic expressions of the Herman-Wallis coefficientsC v v andD v v for the vibration-rotational overtone bandsv 1v for diatomic molecules in1 electronic states.  相似文献   

19.
The potential energy surface of Ga2O2 is examined at the SCF and MP2 levels employing basis set of triple- plus double polarization quality. Four stationary points located at the SCF level are characterized via their Hessian index. Electron correlation is important for the energy ordering and splitting of the isomers. For example, two minimum energy structures, a cyclicD 2h form and a linear Ga-O-Ga-O, separated by 25.69 kcal/mol at the SCF level have an energy difference of only 1.70 kcal/mol at the MP2 levels. Our computed harmonic vibrational frequency at 962 cm–1 for the Ga-O-Ga-O minimum structure in in good agreement with the experimental predicted value of 967 cm–1.  相似文献   

20.
A study of the thermal decomposition of an acetylene–ethane-d6 mixture indicates that the rate constant for hydrogen abstraction from acetylene by methyl is more than 20 times less than for abstraction from ethane. Isotopic exchange is initiated by a rapid reaction between product D atoms and C2H2. A series of experiments involving the reactions of a D2–acetylene mixture indicated that a molecular exchange process was also occurring, and it was shown that d[C2HD]/dt = k[D2]0.7[C2H2]0.3, effective activation energy = 15.8 kcal/mol. This mechanism made an insignificant contribution to isotope exchange in C2H2–C2D6 mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号