首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown that for every space with an unconditional basis there exists a uniformly bounded sequence of projectionsP n;n=1, 2, ... whose ranges are uniformly isomorphic tol p n ;n=1, 2, ... either forp=1, orp=2, or forp=∞.  相似文献   

2.
The paper investigates connections between abstract polytopes and properly edge colored graphs. Given any finite n-edge-colored n-regular graph G, we associate to G a simple abstract polytope P G of rank n, the colorful polytope of G, with 1-skeleton isomorphic to G. We investigate the interplay between the geometric, combinatorial, or algebraic properties of the polytope P G and the combinatorial or algebraic structure of the underlying graph G, focussing in particular on aspects of symmetry. Several such families of colorful polytopes are studied including examples derived from a Cayley graph, in particular the graphicahedra, as well as the flagadjacency polytopes and related monodromy polytopes associated with a given abstract polytope. The duals of certain families of colorful polytopes have been important in the topological study of colored triangulations and crystallization of manifolds.  相似文献   

3.
There is a well-known correspondence between abstract regular polytopes and string C-groups. In this paper, for each d?3, a string C-group with d generators, isomorphic to an alternating group of degree n is constructed (for some n?9), or equivalently an abstract regular d-polytope, is produced with automorphism group Alt(n). A method that extends the CPR graph of a polytope to a different CPR graph of a larger (or possibly isomorphic) polytope is used to prove that various groups are themselves string C-groups.  相似文献   

4.
We study the Minkowski length L(P) of a lattice polytope P, which is defined to be the largest number of non-trivial primitive segments whose Minkowski sum lies in P. The Minkowski length represents the largest possible number of factors in a factorization of polynomials with exponent vectors in P, and shows up in lower bounds for the minimum distance of toric codes. In this paper we give a polytime algorithm for computing L(P) where P is a 3D lattice polytope. We next study 3D lattice polytopes of Minkowski length 1. In particular, we show that if Q, a subpolytope of P, is the Minkowski sum of L=L(P) lattice polytopes Q i , each of Minkowski length 1, then the total number of interior lattice points of the polytopes Q 1,??,Q L is at most 4. Both results extend previously known results for lattice polygons. Our methods differ substantially from those used in the two-dimensional case.  相似文献   

5.
Let ?? be a set of n-dimensional polytopes. A set ?? of n-dimensional polytopes is said to be an element set for ?? if each polytope in ?? is the union of a finite number of polytopes in ?? identified along (n ? 1)-dimensional faces. The element number of the set ?? of polyhedra, denoted by e(??), is the minimum cardinality of the element sets for ??, where the minimum is taken over all possible element sets ${\Omega \in \mathcal{E}(\Sigma)}$ . It is proved in Theorem 1 that the element number of the convex regular 4-dimensional polytopes is 4, and in Theorem 2 that the element numbers of the convex regular n-dimensional polytopes is 3 for n ?? 5. The results in this paper together with our previous papers determine completely the element numbers of the convex regular n-dimensional polytopes for all n ?? 2.  相似文献   

6.
We say that a (d+1)-polytope P is an extension of a polytope K if the facets or the vertex figures of P are isomorphic to K. The Schläfli symbol of any regular extension of a regular polytope is determined except for its first or last entry. For any regular polytope K we construct regular extensions with any even number as first entry of the Schläfli symbol. These extensions are lattices if K is a lattice. Moreover, using the so-called CPR graphs we provide a more general way of constructing extensions of polytopes.  相似文献   

7.
Summary Abstract regular polytopes are complexes which generalize the classical regular polytopes. This paper discusses the topology of abstract regular polytopes whose vertex-figures are spherical and whose facets are topologically distinct from balls. The case of toroidal facets is particularly interesting and was studied earlier by Coxeter, Shephard and Grünbaum. Ann-dimensional manifold is associated with many abstract (n + 1)-polytopes. This is decomposed inton-dimensional manifolds-with-boundary (such as solid tori). For some polytopes with few faces the topological type or certain topological invariants of these manifolds are determined. For 4-polytopes with toroidal facets the manifolds include the 3-sphereS 3, connected sums of handlesS 1 × S 2 , euclidean and spherical space forms, and other examples with non-trivial fundamental group.  相似文献   

8.
We say that the sequence (an) is quasi-polynomial in n if there exist polynomials P0,…,Ps−1 and an integer n0 such that, for all n?n0, an=Pi(n) where . We present several families of combinatorial objects with the following properties: Each family of objects depends on two or more parameters, and the number of isomorphism types of objects is quasi-polynomial in one of the parameters whenever the values of the remaining parameters are fixed to arbitrary constants. For each family we are able to translate the problem of counting isomorphism types of objects into the problem of counting integer points in a union of parametrized rational polytopes. The families of objects to which this approach is applicable include combinatorial designs, linear and unrestricted codes, and dissections of regular polygons.  相似文献   

9.
An H1,{H2}-factor of a graph G is a spanning subgraph of G with exactly one component isomorphic to the graph H1 and all other components (if there are any) isomorphic to the graph H2. We completely characterise the class of connected almost claw-free graphs that have a P7,{P2}-factor, where P7 and P2 denote the paths on seven and two vertices, respectively. We apply this result to parallel knock-out schemes for almost claw-free graphs. These schemes proceed in rounds in each of which each surviving vertex eliminates one of its surviving neighbours. A graph is reducible if such a scheme eliminates every vertex in the graph. Using our characterisation, we are able to classify all reducible almost claw-free graphs, and we can show that every reducible almost claw-free graph is reducible in at most two rounds. This leads to a quadratic time algorithm for determining if an almost claw-free graph is reducible (which is a generalisation and improvement upon the previous strongest result that showed that there was a O(n5.376) time algorithm for claw-free graphs on n vertices).  相似文献   

10.
There are only finitely many locally projective regular polytopes of type {5, 3, 5}. They are covered by a locally spherical polytope whose automorphism group is J1×J1×L2(19), where J1 is the first Janko group, of order 175560, and L2(19) is the projective special linear group of order 3420. This polytope is minimal, in the sense that any other polytope that covers all locally projective polytopes of type {5, 3, 5} must in turn cover this one.  相似文献   

11.
We show that for polytopes P1,P2,…,PrRd, each having ni?d+1 vertices, the Minkowski sum P1+P2+?+Pr cannot achieve the maximum of ini vertices if r?d. This complements a recent result of Fukuda and Weibel (2006), who show that this is possible for up to d−1 summands. The result is obtained by combining methods from discrete geometry (Gale transforms) and topological combinatorics (van Kampen-type obstructions).  相似文献   

12.
LetK be a configuration, a set of points in some finite-dimensional Euclidean space. Letn andk be positive integers. The notationR(K, n, r) is an abbreviation for the following statement: For everyr-coloring of the points of then-dimensional Euclidean space,R n , a monochromatic configurationL which is congruent toK exists. A configurationK is Ramsey if the following holds: For every positive integerr, a positive integern=n(K, r) exists such that, for allm≥n, R(K, m, r) holds. A configuration is spherical if it can be embedded in the surface of a sphere inn-space, providedn is sufficiently large. It is relatively easy to show that if a configuration is Ramsey, it must be spherical. Accordingly, a good fraction of the research efforts in Euclidean Ramsey theory is devoted to determining which spherical configurations are Ramsey. It is known that then-dimensional measure polytopes (the higher-dimensional analogs of a cube), then-dimensional simplex, and the regular polyhedra inR 2 andR 3 are Ramsey. Now letE denote a set of edges in a configurationK. The pair (K, E) is called an edge-configuration, andR e (K, E, n, r) is used as an abbreviation for the following statement: For anyr-coloring of the edges ofR n , there is an edge configuration (L, F) congruent to (K, E) so that all edges inF are assigned the same color. An edge-configuration isedge-Ramsey if, for allr≥1, a positive integern=n(K, E, r) exists so that ifm≥n, the statementR e (K, E, m, r) holds. IfK is a regular polytope, it is saidK isedge-Ramsey when the configuration determined by the set of edges of minimum length is edge-Ramsey. It is known that then-dimensional simplex is edge-Ramsey and that the nodes of any edge-Ramsey configuration can be partitioned into two spherical sets. Furthermore, the edges of any edge-Ramsey configuration must all have the same length. It is conjectured that the unit square is edge-Ramsey, and it is natural to ask the more general question: Which regular polytopes are edge-Ramsey? In this article it is shown that then-dimensional measure polytope and then-dimensional cross polytope are edge-Ramsey. It is also shown that these two infinite families and then-dimensional simplexes are the only regular edge-Ramsey polytopes, with the possible exceptions of the hexagon and the 24-cell.  相似文献   

13.
For any two positive integers n and k ? 2, let G(n, k) be a digraph whose set of vertices is {0, 1, …, n ? 1} and such that there is a directed edge from a vertex a to a vertex b if a k b (mod n). Let \(n = \prod\nolimits_{i = 1}^r {p_i^{{e_i}}} \) be the prime factorization of n. Let P be the set of all primes dividing n and let P 1, P 2 ? P be such that P 1P 2 = P and P 1P 2 = ?. A fundamental constituent of G(n, k), denoted by \(G_{{P_2}}^*(n,k)\), is a subdigraph of G(n, k) induced on the set of vertices which are multiples of \(\prod\nolimits_{{p_i} \in {P_2}} {{p_i}} \) and are relatively prime to all primes qP 1. L. Somer and M. K?i?ek proved that the trees attached to all cycle vertices in the same fundamental constituent of G(n, k) are isomorphic. In this paper, we characterize all digraphs G(n, k) such that the trees attached to all cycle vertices in different fundamental constituents of G(n, k) are isomorphic. We also provide a necessary and sufficient condition on G(n, k) such that the trees attached to all cycle vertices in G(n, k) are isomorphic.  相似文献   

14.
The secondary polytope of a point configuration A is a polytope whose face poset is isomorphic to the poset of all regular subdivisions of A. While the vertices of the secondary polytope - corresponding to the triangulations of A - are very well studied, there is not much known about the facets of the secondary polytope.The splits of a polytope, subdivisions with exactly two maximal faces, are the simplest examples of such facets and the first that were systematically investigated. The present paper can be seen as a continuation of these studies and as a starting point of an examination of the subdivisions corresponding to the facets of the secondary polytope in general. As a special case, the notion of k-split is introduced as a possibility to classify polytopes in accordance to the complexity of the facets of their secondary polytopes. An application to matroid subdivisions of hypersimplices and tropical geometry is given.  相似文献   

15.
For each positive integer n, let Tn be the tree in which exactly one vertex has degree n and all the other vertices have degree n + 1. A graph G is called stable if its edge set is nonempty and if deleting an arbitrary edge of G there is always a component of the residue graph which is isomorphic to G. The question whether there are locally finite stable graphs that are not isomorphic to one of the graphs Tn is answered affirmatively by constructing an uncountable family of pairwise nonisomorphic, locally finite, stable graphs. Further, the following results are proved: (1) Among the locally finite trees containing no subdivision of T2, the oneway infinite path T1 is the only stable graph. (2) Among the locally finite graphs containing no two-way infinite path, T1 is also the only stable graph.  相似文献   

16.
In this paper we use toric geometry to investigate the topology of the totally non-negative part of the Grassmannian, denoted (Gr k,n )≥0. This is a cell complex whose cells Δ G can be parameterized in terms of the combinatorics of plane-bipartite graphs G. To each cell Δ G we associate a certain polytope P(G). The polytopes P(G) are analogous to the well-known Birkhoff polytopes, and we describe their face lattices in terms of matchings and unions of matchings of G. We also demonstrate a close connection between the polytopes P(G) and matroid polytopes. We use the data of P(G) to define an associated toric variety X G . We use our technology to prove that the cell decomposition of (Gr k,n )≥0 is a CW complex, and furthermore, that the Euler characteristic of the closure of each cell of (Gr k,n )≥0 is 1. Alexander Postnikov was supported in part by NSF CAREER Award DMS-0504629. David Speyer was supported by a research fellowship from the Clay Mathematics Institute. Lauren Williams was supported in part by the NSF.  相似文献   

17.
A subpolytope Γ of the polytope Ωn of all n×n nonnegative doubly stochastic matrices is said to be a permanental polytope if the permanent function is constant on Γ. Geometrical properties of permanental polytopes are investigated. No matrix of the form 1⊕A where A is in Ω2 is contained in any permanental polytope of Ω3 with positive dimension. There is no 3-dimensional permanental polytope of Ω3, and there is essentially a unique maximal 2-dimensional permanental polytope of Ω3 (a square of side 13). Permanental polytopes of dimension (n2?3n+4)2 are exhibited for each n?4.  相似文献   

18.
Du et al. (in J. Comb. Theory B 74:276–290, 1998 and J. Comb. Theory B 93:73–93, 2005), classified regular covers of complete graph whose fiber-preserving automorphism group acts 2-arc-transitively, and whose covering transformation group is either cyclic or isomorphic to $\mathbb{Z}_{p}^{2}$ or $\mathbb{Z}_{p}^{3}$ with p a prime. In this paper, a complete classification is achieved of all the regular covers of bipartite complete graphs minus a matching K n,n ?nK 2 with cyclic covering transformation groups, whose fiber-preserving automorphism groups act 2-arc-transitively.  相似文献   

19.
In PG(d, q t ) we construct a set ? of mutually disjoint subgeometries isomorphic to PG(d, q) almost partitioning the point set of PG(d, q t ) such that there is a group of collineations of PG(d, q t ) operating simultaneously as a Singer cycle on all elements of ?. In PG(t?1,q t ) we construct big subsets ? of ? whose elements are far away from each other in the following sense:

u

  • ? If P 1, P 2 ∈ ? k , then no point of P 1 lies on ak-dimensional subspace of P 2.
  • For example, we get a set ofq - 1 subplanes of orderq of PG(2,q 3) such that no point of one subplane lies on a line of another subplane, and such that no three points of three different subplanes are collinear.  相似文献   

    20.
    Atournament regular representation (TRR) of an abstract groupG is a tournamentT whose automorphism group is isomorphic toG and is a regular permutation group on the vertices ofT. L. Babai and W. Imrich have shown that every finite group of odd order exceptZ 3 ×Z 3 admits a TRR. In the present paper we give several sufficient conditions for an infinite groupG with no element of order 2 to admit a TRR. Among these are the following: (1)G is a cyclic extension byZ of a finitely generated group; (2)G is a cyclic extension byZ 2n+1 of any group admitting a TRR; (3)G is a finitely generated abelian group; (4)G is a countably generated abelian group whose torsion subgroup is finite.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号