首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
It has been found that SF6 molecules captured by large van der Waals clusters (CO2) N (where N ≥ 102 is the number of monomers in a cluster) in intersecting molecular and cluster beams sublimate from the surface of clusters after a certain time and carry information on the velocity and temperature (internal energy) of clusters. Experiments have been carried out for detecting these molecules by means of a pyroelectric detector and the infrared multiphoton excitation method. The multiphoton absorption spectra of molecules sublimating from the surface of clusters have been obtained. The temperature of the (CO2) N nanoparticles in the cluster beam has been estimated using these spectra and comparing them with the infrared multiphoton absorption spectra of SF6 in the initial molecular beam.  相似文献   

2.
A temperature measurement technique using SF6 molecules as tiny probe thermometers is described, and results are presented, for large (CO2) N van der Waals clusters (with N ≥ 102) in a cluster beam. The SF6 molecules captured by (CO2) N clusters in crossed cluster and molecular beams sublimate (evaporate) after a certain time, carrying information about the cluster velocity and internal temperature. Experiments are performed using detection of these molecules with an uncooled pyroelectric detector and infrared multiphoton excitation. The multiphoton absorption spectra of molecules sublimating from clusters are compared with the IR multiphoton absorption spectra of SF6 in the incoming beam. As a result, the nanoparticle temperature in the (CO2) N cluster beam is estimated as T cl < 150 K. Time-of-flight measurements using a pyroelectric detector and a pulsed CO2 laser are performed to determine the velocity (kinetic energy) of SF6 molecules sublimating from clusters, and the cluster temperature is found to be T cl = 105 ± 15 K. The effects of various factors on the results of nanoparticle temperature measurements are analyzed. The potential use of the proposed technique for vibrational cooling of molecules to low temperatures is discussed.  相似文献   

3.
The S 2p core level photoelectron spectra of Sulphurhexafluoride clusters have been investigated together with heterogeneous Ar/SF6 clusters, created by doping Ar host clusters (with a mean size of 3600 atoms) with the molecule. Surface and bulk features are resolved both in the argon 2p and the sulphur 2p core level photoelectron spectra. For the latter level such features were only observed in the pure cluster case; a single feature characterizes the S 2p core level spectra of SF6 doped argon clusters. From the chemical shifts, investigated with respect to SF6 doping pressure. It can be concluded that the host clusters get smaller with increasing doping pressures and that the SF6 molecules predominantly stay below the cluster surface, whereas the Argon core stays intact. We have neither observed features corresponding to SF6 on the cluster surface, nor features corresponding to molecules deep inside the bulk in any of the spectra from the pick-up experiments.  相似文献   

4.
The method is described and the experimental results are presented on the temperature determination of the (CF3I) N clusters in a beam (N ⩽ 102 is a number of monomers in a cluster) using SF6 molecules from intersecting molecular beam as probe thermometers. The SF6 molecules are captured by clusters in the crossed cluster and molecular beams and, after a certain time, sublimate from the surface of clusters carrying information on the velocity and temperature (internal energy) of clusters. Using time-of-flight (TOF) method the kinetic energy (velocity) of sublimated SF6 molecules was measured and the temperature of clusters was determined to be T cl = (88 ± 15) K.  相似文献   

5.
A universal probe method for measuring the temperature of large clusters (nanoparticles) in a cluster beam has been proposed and experimentally implemented. The temperature of large van der Waals clusters (nanoparticles) (CO2) N (where N ⩾ 102 is the number of monomers in a cluster) in the cluster beam is measured using this method with SF6 molecules as miniature probe thermometers. The SF6 molecules are captured by the (CO2) N clusters in intersecting cluster and molecular beams and sublimate from the surface of the clusters, carrying information on the velocity and temperature (internal energy) of the clusters. The velocity (kinetic energy) of SF6 molecules sublimating from the surface of the clusters has been measured by the time-of-flight method and the temperature of the clusters has been determined as T cl = (105 ± 15) K.  相似文献   

6.
The photoionization cross-sections for the 3s and 3p shells of atomic Si, P, S, and Cl and the S2+ ion, and for the 2s and 2p shells of atomic F have been calculated using the random-phase approximation with exchange (RPAE) for the average-configuration term. Using the theoretical atomic cross-section values, the partial cross-sections for photoionization of the SF6 molecule have been calculated for hv ? 54 eV and the photoelectron spectra have been interpreted. The calculation of relative intensities in the photoelectron spectra of H2S is presented. The influence of the effective charge of an atom on the photoionization cross-section value for a molecular level is shown.  相似文献   

7.
A diode laser was used to measure the absorption spectrum of the ν3 band of 34SF6. This isotopic species, which is present in the natural sample (4.2%), was cooled in a molecular beam of pure SF6. Subbranches up to J = 22 were recorded and identified. The molecular parameters, determined with a simple fitting procedure, are compared with those known of 32SF6 and 33SF6.  相似文献   

8.
The process of the isotope-selective multiphoton IR dissociation of SF6 molecules under the non-equilibrium conditions of a pulsed gasodynamically cooled molecular flow interacting with a solid surface was experimentally studied. The SF6 molecules dissociate as a result of excitation in a shock wave generated in the flow, in the flow incident onto the sold surface, and in an unperturbed flow (in the absence of the solid). The experiment was based on detecting the luminescence from HF* molecules (λ ≈ 2.5) μm) accompanying the SF6 dissociation in the presence of H2 or CH4, the emission intensity being a measure of the SF6 dissociation yield. The molecular beam parameters were studied. The time-of-flight spectra of SF6 in the flow interacting with the surface were measured under various experimental conditions. The spectral and energy characteristics of the SF6 dissociation process were determined in the flow interacting with the solid surface and in the unperturbed flow. The dissociation product (SF4) yield was measured and the coefficient of its enrichment with the 34S isotope was determined. It is demonstrated that, using the shock wave formation, it is possible to increase the efficiency of the isotope-selective dissociation of SF6 molecules. An explanation of the observed results is proposed. The gas density and temperature in the incident flow and in the shock wave were estimated. The results are analyzed and compared to the other published data on the SF6 dissociation in a molecular beam.  相似文献   

9.
The IR absorption spectra of solutions of SF6 in liquid argon are studied at a temperature of 93 K in the concentration interval 10?5–10?7 mole fractions. A sample with a natural abundance of isotopes and a monoisotope 34SF6 sample are studied. The frequencies, half-widths, and relative intensities of bands in the vibrational spectrum of all isotopomers of the molecule are determined. For the 34SF6 molecule, the ratio of integral absorption coefficients of fundamental bands A4)/A3)=0.07(6) is larger than 32SF6:A4)/A3)=0.66(4) for the 32SF6 molecule, which corresponds to the same signs of P3 and P4. The change in the intensity of the ν26 and ν56 bands upon isotopic substitution is explained by the change in the resonance contributions of due to the isotope shift of the ν3 band.  相似文献   

10.
The interaction of intense beams of SF6 and CF3I molecules, excited by powerful IR laser radiation to high vibrational states (0.3 eV ≤ E vib ≤ 2.0 eV), with molecules (clusters) condensed on a cold surface (T s ≈ 80–85 K) has been studied. The probability that the excited and unexcited molecules are reflected from the cold metal surface covered by condensed molecules (clusters), as well as the probability that such excited and unexcited molecules are transmitted through a cooled multichannel metal plate and a converging cone oriented at an angle relative to the molecular beam axis, has been determined. Expressions for these probabilities of reflection and transmission as functions of the angle of incidence and the parameters of the exciting laser radiation and the molecular beam are obtained. It is shown that highly vibrationally excited molecules are reflected from the surface and transmitted through the plates and cones with a much higher probability than unexcited molecules. The results suggest that this phenomenon can be used for the separation of molecules in a beam with respect to isotope (or atomic) composition.  相似文献   

11.
Using two variants of the Laser Photoelectron Attachment (LPA) method involving a differentially-pumped, seeded supersonic beam (0.05% and 12.5% of SF6 molecules in helium carrier gas, nozzle temperatures T0= 300–600 K, stagnation pressures p0= 1–5 bar) and mass spectrometric ion detection, we have investigated the energy dependence of anion formation in low-energy electron collisions with SF6 molecules at high energy resolution. Using the standard LPA method, the yield for SF6- as well as SF5- and F- anions was studied with an energy width around 1 meV over the electron energy range 0–200 meV. In addition, a variant of the LPA method with extended energy range (denoted as EXLPA) was developed and applied to measure the yield for SF6- and SF5- formation over the energy range 0–1.5 eV with an energy width of about 20 meV. The cross-section for formation of SF6- decreases by five orders of magnitude over the range 1–500 meV and is only weakly dependent on nozzle temperature. The yield for SF5- formation shows — apart from a weak zero energy peak which grows strongly with rising temperature — a broad maximum (located around 0.6 eV for T0= 300 K and shifting to lower energies with rising T0) and a monotonical decrease towards higher energies. SF5- attachment spectra taken at elevated temperatures exhibit changes with rising stagnation pressure which directly reflect rovibrational cooling of the SF6 molecules with rising pressure. The SF5-/SF6- intensity ratio at near-zero energy and the low-energy shape of the broad peak in the SF5- spectra are used as thermometers for the internal temperature of the SF6 molecules in the seeded supersonic beam which (at p0= 1 bar) are found to be 50–100 K lower than the nozzle temperature. The energy dependence of the yield for F- formation is similar to that for SF6-, but the F- signals are three to four orders of magnitude lower than those for SF6-; in view of the rather high endothermicity of F- formation the origin of the F- signals is discussed in some detail.  相似文献   

12.
A method for obtaining an intense secondary pulsed molecular beam is described. The kinetic energy of molecules in the beam can be controlled by vibrational excitation of the molecules in the source under high-power IR laser radiation. A compression shock (shock wave) is used as a source of secondary beams. The shock wave is formed in interaction between an intense pulsed supersonic molecular beam (or flow) and a solid surface. The characteristics of the secondary beam were studied. Its intensity and the degree of gas cooling in it were comparable with the corresponding characteristics of the unperturbed primary beam. Vibrational excitation of molecules in the shock wave and subsequent vibrational-translational relaxation, which occurs when a gas is expanded in a vacuum, allow the kinetic energy of molecules in the secondary beam to be substantially increased. Intense [≥1020 molecules/(sr s)] beams of SF6 and CF3I molecules with kinetic energies approximately equal to 1.5 and 1.2 eV, respectively, were generated in the absence of carrier gases, and SF6 molecular beams with kinetic energies approximately equal to 2.5 and 2.7 eV with He (SF6/He=1/10) and H2 (SF6/H2=1/10) as carrier gases, respectively, were obtained. The spectral and energy characteristics of acceleration of SF6 molecules in the secondary beams were studied. The optimal conditions were found for obtaining high-energy molecules. The possibility of accelerating radicals in secondary molecular beams was demonstrated.  相似文献   

13.
Pure rotational spectra of the three molecules 32SF535Cl, 32SF537Cl, and 34SF535Cl in their ground vibrational states have been observed up to 300 GHz (8 < J < 80). Molecular parameters have been computed with good accuracy for the three isotopic species. The “K-type” splitting characteristic of molecules belonging to the C4v symmetry group has been clearly seen and measured.  相似文献   

14.
A supersonic-free-jet infrared spectrometer has been constructed for investigation of molecular vibrational spectra at low rotational and vibrational temperatures. The sensitivity of measurement in a pulsed jet is increased by employing a phase-sensitive detection method synchronized with the pulse frequency. The performance of the spectrometer is examined for the absorption lines of the NH3 v 2 band. A rotational temperature as low as 16K is attained when seeded in He. Cold-jet spectra are demonstrated for thev 3 bands of PF5,34SF6, and182WF6.  相似文献   

15.
The pyramidal isomer of disulfur difluoride, SSF2, has been prepared by passing gaseous disulfur dichloride through heated potassium fluoride. The microwave spectra of three isotopic species of SSF2 have been measured in the 26- to 76-GHz frequency region. For the most abundant isotopic species transitions with J values up to 79 have been observed. These data have been combined with previous measurements of low-J lines by R. L. Kuczkowski [J. Amer. Chem. Soc. 86, 3617–3621 (1964)] and fit to obtain values for the rotational constants and centrifugal distortion constants. The quartic centrifugal distortion constants have been used together with existing vibrational data to determine an harmonic force field for the molecule. Finally, ground state average and equilibrium structures have been calculated for SSF2.  相似文献   

16.
Using a pyroelectric detector, the multiple photon absorption (MPA) of the SF6 molecule in a wide range of pressures (10-3 -1 torr) has been studied. The significant role of collisions in MPA has been shown. The fraction of molecules excited under essentially collisionless conditions has been defined. It is shown that under collisionless excitation of SF6 (p < 10-2 torr) at energy fluences E < 10-1 J/cm2 the intensity of the laser pulse plays the essential role, while in presence of collisions MPA is determined mainly by the energy fluence in the pulse.  相似文献   

17.
A method is suggested for generating high-intensity secondary pulsed molecular beams in which the kinetic energy of molecules can be controlled by an intense laser IR radiation through the vibrational excitation of molecules in the source. High-intensity [≥1020 molecule/(sr s)] SF6 molecular beams with a kinetic energy of ?1.0 eV without carrier gas and of ?1.9 and ?2.4 eV with carrier He (SF6/He=1/10) and H2 (SF6/H2=1/10) gases, respectively, were obtained.  相似文献   

18.
The ν1 region of 32SF6 and 34SF6 has been studied by stimulated Raman spectroscopy. For both isotopomers, a detailed analysis has been performed. Several hot bands (ν1+ν6ν6, ν1+2ν6−2ν6, ν1+ν5ν5) have been taken into account to calculate synthetic spectra that satisfactorily reproduce the experimental data. These results, together with the previous studies of the other fundamental bands have allowed us to determine the equilibrium bond length of sulfur hexafluoride as re=1.5560(1) Å, in very good agreement with recent ab initio calculations. The 2ν1ν1 band has also been studied for both isotopomers by Raman-Raman double resonance spectroscopy and the resulting spectra have been analyzed. In this case, a striking difference is observed between the two isotopomers, since the 2ν1ν1 band of 34SF6 appears to have a very narrow structure that could not be rotationally resolved under the present experimental conditions. All analyses have been performed thanks to the HTDS program suite (http://www.u-bourgogne.fr/LPUB/hTDS.html) dedicated to octahedral XY6 molecules.  相似文献   

19.
The ν1 (CO stretching) and ν2 (CF stretching) bands of the FCO radical were observed with Doppler-limited resolution by an infrared diode laser spectrometer with Zeeman and source modulation. The FCO radical was generated by a 60-Hz discharge in one of the following three gas mixtures: O2 + C2F4, CO + SF6, and CO + C2F4, all diluted with He. The observed spectra were analyzed to determine the rotational constants, the centrifugal distortion constants, and the spin-rotation interaction constants. The band origins, 1861.6372(1) and 1026.1283(1) cm?1 [with standard errors in parentheses], which were obtained, were found to agree well with matrix data, 1857 and 1023 cm?1, respectively. The assignment of the observed spectra to the FCO radical was further supported by observing the ν1 band of F13CO, which was obtained from 13CO and SF6. The molecular structure and the force field of FCO are briefly discussed by using molecular constants obtained from the observed spectra.  相似文献   

20.
The experimental Kβ5 and Lα emission spectra for vanadium and Kα spectra for nonmetal are studied for vanadium monoxide, nitride and carbide. Using the spectra unfolding the experimental molecular orbital diagrams have been obtained. By the semiempirical Mulliken-Wolfsberg-Helmholz method with the self-consistency on charges and configurations the calculations of electronic structure of clusters [VO6]10?, [VN6]15? and [VC6]20? have been carried out. The results of calculations are compared with the X-ray data. The effects of chemical bonding and charge densities on metal atoms in VO, VN, VC are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号