首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
使用雷诺平均NS方程、采用Johnson-King紊流模型、嵌套网格和有限体积法研究大迎角下的多缝道的多段翼型绕流。利用嵌合体技术对组合每一部分生成高质量并适于高效求解的贴体网格;将J-K模型发展应用于计算缝道流动以及具有边界层、尾迹流交汇的复杂流动。以具有17%相对厚度的GAW-1翼型带30%襟翼翼型及一个三段翼型为例进行了计算,计算结果与实验结果吻合很好,证实该方法可以较好地预示多段翼型上的粘性绕流、多缝道流动与最大升力。  相似文献   

2.
低雷诺数流动对高空动力装置, 特别是涡轮部件的性能产生重要的影响. 本文采用具有7阶精度的差分格式, 通过直接求解二维瞬态可压缩Navier-Stokes方程组, 对雷诺数为241 800 (基于叶片弦长)时的叶片表面带有热传导效应的平面涡轮叶栅流动进行了二维直接数值模拟, 对低雷诺数平面涡轮叶栅流动的非定常流动现象作了初步的探索.数值结果表明:在叶栅通道入口处, 流场的非定常性很弱;在叶栅尾缘处, 具有正负涡量的尾涡交替地从压力面和吸力面上脱落;周期性的涡脱落使得叶栅通道内和尾迹区的总压发生(准)周期的变化, 并且, 尾迹区总压变化主频率是通道内总压变化主频率的2倍;在时均流场中, 叶片表面压力的分布与实验值吻合良好, 表征热传导效应的斯坦顿数除湍流区外与实验值基本吻合;尾迹区速度脉动的2阶统计量与圆柱绕流尾迹区速度脉动2阶统计量具有基本相似的分布特征.  相似文献   

3.
利用同位非结构化网格上的压力加权修正算法 ,对翼型湍流绕流进行了数值分析。详细地给出了一孤立翼型在不同攻角下的分离流结构及翼型表面压力分布 ,为了显示非结构化网格方法在求解多连通流动区域的优越性 ,对双翼型绕流进行了数值计算。在数值分析中 ,对阵面推进法进行改进来生成三角形网格 ,采用有限控制体方法直接在物理空间中的非结构化网格单元上离散 Navier- Stokes方程及 k- ε方程 ,形成的代数方程组通过预条件矩阵共轭梯度平方法求解。计算结果表明 :当流动为附着流时 ,计算结果与实验值吻合程度令人相当满意 ;而在分离区内 ,计算结果与实验值存在一定的误差 ,需对分离区内的湍流模型做进一步的改进。  相似文献   

4.
凌国灿  罗才茂 《力学学报》1991,23(5):513-524
本文利用离散涡模型及改进的新生涡产生机制对三种不同来流绕平板的近尾迹进行数值研究。计算讨论了定常流中平板绕流流动的总体特性和近尾迹流场;对于简谐振荡来流,相应于K_c=2.0、4.0 和10.0 分别得到两种不同的尾迹形态。给出了小 K_c 数平板尾迹涡配对、运动的新模式而相应的阻力、惯性力系数计算比以前涡模拟结果更接近于 U 型管实验结果。对于流向组合来流本文模拟了涡锁定及其动力特性并于实验相符,给出了流向扰动对平板绕流流动的影响。  相似文献   

5.
《力学学报》2012,44(1)
对在低雷诺数下局部弹性翼型绕流中,局部弹性导致的自激振动所产生的复杂非定常流动分离现象和描述方法进行了分析.采用ALE—CBS方法数值模拟了具有可动边界的绕流流场问题,同时采用Galerkin方法求解局部弹性结构的控制方程.着重研究了翼型的局部弹性对流动分离和翼型性能的影响,并分别从Eulerian和Lagrangian的角度分析了局部弹性结构导致的不同非定常分离现象,其中Lagrangian角度可以方便地揭示出局部弹性翼型大幅度提高升力的机理和流动中的能量迁移.结果表明翼型的局部弹性对非定常分离和分离泡的演化过程有着明显的影响,可以使得流体质点由主流获取动量实现再附,并且在一定的攻角下可以将固定分离转变为移动分离,从而明显地提高了翼型的升力.  相似文献   

6.
再入飞行器湍流尾迹流场研究   总被引:1,自引:0,他引:1  
于明  牛家玉 《力学学报》2002,34(1):9-17
再入飞行器湍流尾迹流场状况,直接关系到飞行器的雷达散射特性。对再入飞行器湍流尾迹等离子体场理论模型,试图通过湍流模式理论来表达,即使用κ-ε-g模型方程来封闭平均化的全Navier-Stokes方程,从而准确获得流动平均场和脉动场信息。使用的N-S平均方程由质量加权平均过程产生,湍流模型方也经过可压缩性修正。真实气体效应重点考察空气处于局部热化学平衡状态。流动控制方程运用一个二阶TVD格式的有限体积法求解,以一典型小钝锥体零攻角再入飞行为例,计算了在两种高程(H-40km和H=30km)条件下的高超声速湍流尾迹流场。获得的尾迹流场参数与流动物理状况符合,并且湍流脉动参数与已有相应的实验结果定性一致,初步证实该方法合理。  相似文献   

7.
涡、声干扰研究的某些进展   总被引:2,自引:0,他引:2  
居鸿宾  沈孟育 《力学进展》1997,27(3):358-371
综述射流和翼型绕流中涡声及声学控制流动的研究进展,总结涡、声干扰的若干基本理论,并讨论数值模拟在此领域中的应用.  相似文献   

8.
平板大攻角绕流升力和阻力系数的计算   总被引:1,自引:0,他引:1  
二维平板或二维对称薄翼型大攻角绕流升力和阻力系数与攻角之间存在的函数关系一般用数据表格的形式给出。本文根据垂直平板绕流阻力实验数据和对称薄翼型全攻角绕流实验数据,分析得到了平板大攻角绕流总压力及其升力分量和阻力分量系数的近似计算公式。结果表明:平板总压力系数约等于攻角正弦值的2倍;总压力的阻力分量系数约等于攻角正弦值平方的2倍;升力分量系数约为攻角2倍的正弦值。计算结果与两组试验数据具有较好的一致性。  相似文献   

9.
伍贻兆  杨岞 《力学学报》1990,22(3):257-265
本文利用渐近展开匹配法分析钝头翼型的跨音速绕流,导出了描述前缘附近流动的一级近似、二级近似下的速位方程、边界条件及相应的近似解析解,并构成关于翼表面速度的一致有效合成解,消除了跨音速小扰动近似的前缘奇性,对于大展弦比后掠翼绕流,可利用翼型绕流分析结果,消除机翼前缘奇性。  相似文献   

10.
本文采用LIF(激光诱导荧光)流动显示和PIV(粒子图像速度场仪)测量对横流冲击射流的尾迹涡结构进行了实验研究。水槽实验是在三种流速比和两种冲击高度实验工况下进行的。由实验结果可得到两种明显的尾迹涡结构、,即射流尾迹涡和横流尾迹涡。横流冲击射流中形成的主要尾迹涡结构主要依赖于流速比。本文还对横流冲击射流近区范围内射流尾迹涡和横流尾迹涡的形成机理和演化特征进行了分析。  相似文献   

11.
Extensive measurements were conducted in an incompressible turbulent flow around the wing-body junction formed by a 3∶2 semi-elliptic nose/NACA 0020 tail section and a flat plate. Mean and fluctuating velocity measurements were performed adjacent to the wing and up to 11.56 chord lengths downstream. The appendage far wake region was subjected to an adverse pressure gradient. The authors' results show that the characteristic horseshoe vortex flow structure is elliptically shaped, with ? (W)/?Y forming the primary component of the streamwise vorticity. The streamwise development of the flow distortions and vorticity distributions is highly dependent on the geometry-induced pressure gradients and resulting flow skewing directions. The primary goal of this research was to determine the effects of the approach boundary layer characteristics on the junction flow. To accomplish this goal, the authors' results were compared to several other junction flow data sets obtained using the same body shape. The trailing vortex leg flow structure was found to scale on T. A parameter known as the momentum deficit factor (MDF = (Re T)2 (θ/T)) was found to correlate the observed trends in mean flow distortion magnitudes and vorticity distribution. Changes in δ/T were seen to affect the distribution of u′, with lower ratios producing well defined local turbulence maxima. Increased thinning of the boundary layer near the appendage was also observed for small values of δ/T.  相似文献   

12.
Laser-Doppler velocimeter measurements of a wing/body junction flow field made within a plane to the side of the wing/wall junction and perpendicular both to a 3:2 elliptical nose—NACA 0020 tail wing, and a flat wall are presented. Reynolds number of the approach boundary layer was, Reθ = 5940, and free-stream air velocity was, Uref = 27.5 m/s. A large vortical structure residing in the outer region redirects the low-turbulence free-stream flow to the vicinity of the wing/wall junction, resulting in thin boundary layers with velocity magnitudes higher than free-stream flow. Lateral pressure gradients result in a three-dimensional separation on the uplifting side of the vortex. Additionally, a high vorticity vortical structure with opposite sense to the outer-layer vortex forms beneath the outer-layer vortex. Normal and shear stresses increase to attain values an order of magnitude larger compared to values measured in a three-dimensional boundary layer just outside the junction vortex. Bimodal histograms of the w fluctuating velocity occur under the outer-layer vortex near the wall due to the time-dependent nature of the horseshoe vortex. In such a flow the shear-stress angle (SSA) highly lags the flow-gradient angle (FGA), and the turbulence diffusion is highly altered due to presence of vortical structures.  相似文献   

13.
An improved analytical treatment is developed which makes possible the satisfactory prediction of the liquid velocity distribution in two-phase bubble flow.In the analysis, the shear stress in the liquid phase is regarded as important. When the fluctuation of turbulent velocity can be subdivided into two components: one due to the inherent liquid turbulence independent of the existence of the bubble, (u′, υ′), and the other due to the additional liquid turbulence by the bubble agitation, (u″, υ″), it is possible to split the shear stress into two components, - ?u′υ′ and - ?u″υ″ corresponding to (u′, υ′) and (u″, υ″), respectively.A basic equation for the liquid velocity distribution is derived from further development of this treatment. The agreement between the measured velocity profiles and those calculated is quite close especially in the core region of a duct.  相似文献   

14.
Wing-body junction turbulence flow is simulated by using RANS equation and boundary fitted coordinate technique.Three order differential scheme is used in the computation of convection term and two layers turbulence model are employed in the calculation.  相似文献   

15.
Smoke-wire flow visualization is conducted carefully in a laminar junction to explore the physical behavior of laminar junction flows. The two-dimensional(2 D)velocity fields in the 30?plane of a laminar junction flow are acquired by a time-resolved particle image velocimetry(PIV) system at a frame rate of 1 kHz, based on which the unsteady fluctuating pressure fields can be calculated by the multi-path integration method proposed in the literature(GAND, F., DECK, S., BRUNET,V., and SAGAUT, P. Flow dynamics past a simplified wing body junction. Physics of Fluids, 22(11), 115111(2010)).A novel control strategy is utilized to attenuate the unsteadiness of the horseshoe vortices of the laminar junction flow, and the consequent effect on pressure fields is analyzed.  相似文献   

16.
Experimental data for a two-dimensional (2-D) turbulent boundary layer (TBL) flow and a three-dimensional (3-D) pressure-driven TBL flow outside of a wing/body junction were obtained for an approach Reynolds number based on momentum thickness of Re θ =23,200. The wing shape had a 3:2 elliptical nose, NACA 0020 profiled tail, and was mounted on a flat wall. Some Reynolds number effects are examined using fine spatial resolution (Δy +=1.8) three-velocity-component laser-Doppler velocimeter measurements of mean velocities and Reynolds stresses at nine stations for Re θ =23,200 and previously reported data for a much thinner boundary layer at Re θ =5,940 for the same wing shape. In the 3-D boundary layers, while the stress profiles vary considerably along the flow due to deceleration, acceleration, and skewing, profiles of the parameter correlate well and over available Reynolds numbers. The measured static pressure variations on the flat wall are similar for the two Reynolds numbers, so the vorticity flux and the measured mean velocities scaled on wall variables agree closely near the wall. The stresses vary similarly for both cases, but with higher values in the outer region of the higher Re θ case. The outer layer turbulence in the thicker high Reynolds number case behaves similarly to a rapid distortion of the flow, since stream-wise vortical effects from the wall have not diffused completely through the boundary layer at all measurement stations. Received: 9 June 2000/Accepted: 26 January 2001  相似文献   

17.
The onset of the secondary instability and the successive steps ofthe 3D transition to turbulence are examined in the flow around a wing of NACA0012 section, constant along the spanwise direction. The wing is placed in a uniform flow upstream, at 20° of incidence and at the Reynolds number of 800. The spanwise length is equal to four chords. The objectives of this study are the identification of the three-dimensional transition mechanism and the development of the early stages of turbulence in the present class of unsteady aerodynamic flows. A detailed processing of the DNS signals carried out by an appropriate conditional sampling allows the identification of the physical mechanisms related to the birth of turbulence and to the non-linear interaction with the 3D coherent structures in the near region.  相似文献   

18.
The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grids, under typical hovering and forward flight conditions. Both the interaction between the contralateral wings and the interaction between the body and wings are very weak, e.g. at hovering, changes in aerodynamic forces of a wing due to the present of the other wing are less than 3% and changes in aerodynamic forces of the wings due to presence of the body are less than 2%. The reason for this is as following. During each down- or up-stroke, a wing produces a vortex ring, which induces a relatively large jet-like flow inside the ring but very small flow outside the ring. The vortex rings of the left and right wings are on the two sides of the body. Thus one wing is outside vortex ring of the other wing and the body is outside the vortex rings of the left and right wings, resulting in the weak interactions.  相似文献   

19.
高速三维边界层的横流不稳定性   总被引:3,自引:2,他引:3  
赵耕夫  徐立 《力学学报》1998,30(5):521-530
用两点四阶差分格式研究旋转圆锥超音速三维边界层的横流不稳定性和壁面冷却对稳定性的影响数值结果表明,与二维边界层相比横流使三维边界层第一模式增长率增大,对第二模式影响很小;Me<43第一模式最不稳定,Me>43第二模式最不稳定;三维边界层最不稳定第二模式是三维波,二维边界层则为二维波;壁面冷却对第一模式起稳定作用,对第二模式起不稳定作用  相似文献   

20.
Some Swirling-flow Challenges for Turbulent CFD   总被引:2,自引:0,他引:2  
The paper examines some of the continuing challenges, within a RANS framework, of computing turbulent swirling flows such as are encountered in industry and the environment. The principal focus is on modelling turbulent transport processes but serious problems also arise in handling numerical issues, too. Recent researches of two of these types of flow by the authors and their colleagues in the Turbulence Mechanics Group at Manchester are examined; namely, the confined flow within a rotor–stator disc cavity and the trailing wing-tip vortex. The former flow, while geometrically axisymmetric, has been found to create multiple rotating vortices necessitating a three-dimensional time-dependent analysis. The wing-tip vortex is extremely sensitive to the choice of turbulence model and only a second-moment closure that complies with the constraints of two-component turbulence has been found capable of handling both the flow over the wing and the wake vortex. Moreover, because of the large distances downstream of the aircraft to which, for practical cases, computations need to be carried, the numerical strategy is brought into question. Finally, arising from these two test cases, outline remarks are made about a swirling flow that poses one of the major computational challenges of the twenty-first century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号