首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work investigates acyclic diene metathesis (ADMET) polymerization reactions in aqueous miniemulsion. Different types of ruthenium‐based catalysts and different surfactants (anionic, cationic, and nonionic) were evaluated. A Ru‐indenylidene catalyst (Umicore M2) showed higher activity in water if compared to the Ru‐benzylidene catalysts (Hoveyda Grubbs second generation and Grubbs first generation). Moreover, the catalyst activity was affected by the type of the surfactant. In summary, the Umicore M2 catalyst and the nonionic poly(ethylene oxide) based surfactant Lutensol AT80 were found to be the most suitable combination for ADMET reactions in miniemulsion allowing the preparation of polymers with number average molecular weight (Mn) of up to 15 kDa. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1300–1305  相似文献   

2.
Recent results for synthesis of end-functionalized polymers (EFP) by using olefin metathesis polymerization have been introduced including basic characteristics in ring-opening metathesis polymerization (ROMP) of cyclic olefins and acyclic diene metathesis (ADMET) polymerization for synthesis of conjugated polymers. Several approaches were demonstrated for synthesis of EFP by living ROMP using molybdenum (exclusive coupling with aldehyde) and ruthenium catalysts (sacrificial ROMP, chain transfer). Cis specific (Z selective) ROMPs were achieved by molybdenum, ruthenium, and vanadium catalysts by the ligand modification. The catalytic synthesis of EFP with high cis selectivity has been achieved by combined ROMP with chain transfer by V(CHSiMe3)(N-2,6-Cl2C6H3)[OC(CF3)3](PMe3)2. The ADMET polymerization using molybdenum and ruthenium catalysts afforded defect-free, high molecular weight poly(arylene vinylene)s containing all trans olefinic double bonds. The methods for precise synthesis of EFPs, exhibiting unique optical properties combined with the end groups, were developed. The catalytic one-pot syntheses for EFPs have also been developed.  相似文献   

3.
To study the possibility of living cationic polymerization of vinyl ethers with a urethane group, 4‐vinyloxybutyl n‐butylcarbamate ( 1 ) and 4‐vinyloxybutyl phenylcarbamate ( 2 ) were polymerized with the hydrogen chloride/zinc chloride initiating system in methylene chloride solvent at ?30 °C ([monomer]0 = 0.30 M, [HCl]0/[ZnCl2]0 = 5.0/2.0 mM). The polymerization of 1 was very slow and gave only low‐molecular‐weight polymers with a number‐average molecular weight (Mn) of about 2000 even at 100% monomer conversion. The structural analysis of the products showed occurrence of chain‐transfer reactions because of the urethane group of monomer 1 . In contrast, the polymerization of vinyl ether 2 proceeded much faster than 1 and led to high‐molecular‐weight polymers with narrow molecular weight distributions (MWDs ≤ ~1.2) in quantitative yield. The Mn's of the product polymers increased in direct proportion to monomer conversion and continued to increase linearly after sequential addition of a fresh monomer feed to the almost completely polymerized reaction mixture, whereas the MWDs of the polymers remained narrow. These results indicated the formation of living polymer from vinyl ether 2 . The difference of living nature between monomers 1 and 2 was attributable to the difference of the electron‐withdrawing power of the carbamate substituents, namely, n‐butyl for 1 versus phenyl for 2 , of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2960–2972, 2004  相似文献   

4.
A photoinduced electron transfer‐reversible addition‐fragmentation chain transfer (PET‐RAFT) polymerization of p‐methylstyrene (p‐MS) and styrene (St) with 2‐(dodecylthiocarbonothioylthio)‐2‐methylpropionic acid as the chain transfer agent (CTA) and aromatic aldehydes, including 4‐cyanobenzaldehyde (PC1), 2,4‐dimethoxy benzaldehyde, and 4‐methoxy benzaldehyde, as organic photocatalysts has been demonstrated via irradiation with 23 W compact fluorescent lamps. The kinetics of the polymerizations shows first order with respect to monomer conversions. Linear evolution of the Mn of the produced polymers with the monomer conversion is observed. Meanwhile, the as‐prepared polymers are of relatively narrow polydispersity (PDI = Mw/Mn). For instance, the polymerization of p‐MS shows living polymerization features using PC1 within a range of solvents. Especially, the Mn of PpMS increased from about 2100 to 12,700 g/mol with the monomer conversion from 8% to 52% in tetrahydrofuran. The controlled polymerization of St is also observed under optimal reaction conditions. However, the Mn discrepancy between the experimental readings and theoretical calculations is greater at the monomer conversions greater than 40% and the PDI increased gradually over the monomer conversion. This is probably because that CTA is strongly sensitive to the light irradiation with wave range around its characteristic absorption wavelength, leading to significant decomposition of CTA moieties during the RAFT polymerization. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2072–2079  相似文献   

5.
This article reports a chain-growth coupling polymerization of AB difunctional monomer via copper-catalyzed azide–alkyne cycloaddition (CuAAC) reaction for synthesis of star polymers. Unlike our previously reported CuAAC polymerization of AB n (n ≥ 2) monomers that spontaneously demonstrated a chain-growth mechanism in synthesis of hyperbranched polymer, the homopolymerization of AB monomer showed a common but less desired step-growth mechanism as the triazole groups aligned in a linear chain could not effectively confine the Cu catalyst in the polymer species. In contrast, the use of polytriazole-based core molecules that contained multiple azido groups successfully switched the polymerization of AB monomers into chain-growth mechanism and produced 3-arm star polymers and multi-arm hyperstar polymers with linear increase of polymer molecular weight with conversion and narrow molecular weight distribution, for example, Mw/Mn ~ 1.05. When acid-degradable hyperbranched polymeric core was used, the obtained hyperstar polymers could be easily degraded under acidic environment, producing linear degraded arms with defined polydispersity. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 84–90  相似文献   

6.
Imine macrocyclic ligand M1 was involved in homo‐ and co‐polymerization of some vinyl monomers via atom transfer radical polymerization technique (ATRP). Hereby, vinyl acetate, styrene and methyl acrylate monomers were homopolymerized. On the other hand, they were involved in copolymerization with MMA. M1∶CuBr∶initiator∶monomer percentages were 1∶2∶4∶400. 1HNMR confirmed the structures of the resulting polymers. The thermal behaviors of some selected polymers were studied.  相似文献   

7.
The acyclic diene metathesis (ADMET) polymerization of a phosphorus‐containing α,ω‐diene prepared from a plant oil derived building block is reported. Different ruthenium based metathesis catalysts and conditions were tested to optimize the ADMET polymerization of this monomer. Undecylenyl undecenoate was used as fully renewable comonomer to obtain polyesters with different phosphorus contents and to increase the renewable content of the final polymers. Copolymerization caused marked variations in the molecular weights leading to polyesters from 6 to 38 KDa. The effect of the ADMET polymerization temperature in the thermal properties of the copolymers was studied and their thermal degradation and flame retardant properties were evaluated. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5760–5771, 2009  相似文献   

8.
The acyclic diene metathesis (ADMET) polymerization was utilized for the design of the ADMET polymer (Mn = 21,200 g/mol, Mw/Mn = 1.74) with pendant perfluorophenyl ester functionality using Grubbs first generation catalysis overnight in bulk at 80 °C. Next, a wide variety of functional groups, like benzyl, octyl, propargyl, allyl, and furfuryl was quantitatively incorporated to the ADMET polymer backbone through various amines using activated ester substitution reaction. The ADMET polymers studied in this work were characterized using 1H, 13C, and 19F NMR, GPC and DSC and displayed a monomodal distribution and a rather broad polydispersity index in the range of ?1.33 to 1.90. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2593–2598  相似文献   

9.
Boron‐ and silicon‐containing conjugated homo‐ and copolymers could be synthesized using acyclic diene metathesis (ADMET) condensation of bis‐styryl monomers. Both, tri‐and tetra‐coordinated boron monomers were successfully polymerized forming homopolymers, or random copolymers (if polymerized together with a silicon containing co‐monomer). Polymer molecular weights Mn were measured at ~6000 to 15,000 g/mol (NMR end group analysis) with molecular weight distributions Mw/Mn ~1.8 to 2.2. The polymers absorbed at λmax ~317 to 406 nm and emitted at λmax ~370 to 494 nm with fluorescent quantum efficiencies ~24 to 48%. The copolymer with tri‐coordinate boron showed highly efficient fluorescence quenching in the presence of fluoride ions at ratios boron/fluoride ~5/1, demonstrating its potential as anion sensor. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1707–1718  相似文献   

10.
Phosphorus pentafluoride-catalyzed copolymerization of 1,6-anhydro-2,3,4-tri-O-(p-methylbenzyl)-β-D -glucopyranose (TXGL, monomer G) and 1,6-anhydro-2,3,4-tri-O-benzyl-β-D -mannopyranose (TBMN, monomer M) appears to follow classical copolymerization theory. Reactivity ratios calculated by the procedure of Mayo and Lewis were rG = 0.90 ± 0.08, rM = 11.5 ± 0.80, from which sequence distributions were calculated. A conformational analysis of anhydro sugar polymerization is presented to explain differences in reactivity of monomers and their derived cations in polymerization and copolymerization. The polymers and copolymers were characterized by viscosity, 1H- and 13C-NMR spectroscopy, optical rotation, and circular dichroism. The reaction gives stereoregular polymers as have other polymerizations and copolymerizations of this class.  相似文献   

11.
This article provides an overview on recent progress in the polymerization of 1,3-dienes catalyzed by transition metal complexes with phosphorus and nitrogen ligands. Polymers having different microstructures (cis-1,4; 1,2; mixed cis-1,4/1,2) and tacticity (iso- or syndiotactic) were obtained from various 1,3-dienes (1,3-butadiene, isoprene, 1,3-pentadienes, 1,3-hexadienes) depending on the catalyst used, clearly suggesting that the catalyst structure (i.e. metal nature, type of ligand) strongly affects the polymerization chemo- and stereoselectivity. However, as indicated by the results obtained in the polymerization of substituted butadienes, a fundamental role in determining the selectivity is also played by the type of monomer: polymers with different structure, some of them completely new, were obtained from different monomers with the same catalyst. All these observations permitted to confirm, and in some cases to improve, the knowledge on the diene polymerization mechanism.  相似文献   

12.
A series of end‐functionalized poly(9,9′‐di‐n ‐octylfluorene vinylene)s (EF‐PFVs) with different end groups were obtained by 1) synthesizing EF‐PFV with vinyl end groups by acyclic diene metathesis (ADMET) polymerization with a molybdenum catalyst and termination with an aldehyde and 2) subsequent olefin metathesis of the vinyl group with the molybdenum catalyst followed by Wittig‐type coupling with another aldehyde. The exclusive formation of EF‐PFVs containing a vinyl end group by the ADMET polymerization was confirmed by grafting PEG, and by the synthesis of amphiphilic triblock copolymers by combining atom transfer radical polymerization from the PFV chain end with PEG grafting through a click reaction. Various EF‐PFVs with different end groups, such as C6F5, pyridyl, ferrocenyl, and terthiophene, have thus been prepared. Their fluorescence spectra (e.g., intensities, emission wavelengths) were influenced by the end groups and the length of the conjugation.  相似文献   

13.
Initiators for continuous activator regeneration atom transfer radical polymerization (ICAR ATRP) of an epoxide‐containing monomer, glycidyl methacrylate (GMA), was successfully carried out using low concentration of catalyst (ca. 105 ppm) at 60 °C in anisole. The copper complex of tris(2‐pyridylmethyl)amine was used as the catalyst, diethyl 2‐bromo‐2‐methylmalonate as the initiator, and 2,2′‐azobisisobutyronitrile as the reducing agent. When moderate degrees of polymerization were targeted (up to 200), special purification of the monomer, other than removal of the polymerization inhibitor, was not required to achieve good control. To synthesize well‐defined polymers with higher degrees of polymerization (600), it was essential to use very pure monomer, and polymers of molecular weights exceeding 50,000 g mol?1 and Mw/Mn = 1.10 were prepared. The developed procedures were used to chain‐extend bromine‐terminated poly(methyl methacrylate) macroinitiator prepared by activators regenerated by electron transfer (ARGET) ATRP. The SnII‐mediated ARGET ATRP technique was not suitable for the polymerization of GMA and resulted in polymers with multimodal molecular weight distributions. This was due to the occurrence of epoxide ring‐opening reactions, catalyzed by SnII and SnIV. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
In this work catalytic ring-opening polymerization of cyclic esters in THF in the presence of benzyl alcohol is described. The polymerization is catalyzed by 1,3-bis(4-methoxyphenyl)imidazolium carbene, N-heterocyclic carbene (NHC). The ability of two different monomers, ?-caprolactone and L-lactide, to enter into the polymerization via ring-opening polymerization with NHCs as catalysts was evaluated. The plot of ln([M]0/[M]t) versus reaction time yielded a straight line indicating that the kinetics of polymerization of ?-caprolactone and L-lactide was first-order in monomer concentration. Moreover, a direct relation between the rate of ring-opening polymerization of ?-caprolactone and the catalyst concentration suggested a first-order dependence of the rate of polymerization on the catalyst concentration.  相似文献   

15.
The free‐radical polymerization of 2,2,2‐trifluoroethyl acrylate (TFEA), 1,1,1,3,3,3‐hexafluoro‐2‐propyl acrylate (HFiPA) and perfluoro‐tert‐butyl acrylate (PFtBA) was carried out under various conditions and the stereostructure of the obtained polymers was investigated. Most polymerizations of the three monomers afforded polymers rich in diad syndiotacticity (r) in bulk or in solution; the r‐specificity was higher in the HFiPA and PFtBA polymerization than in the TFEA polymerization. Although the tacticity was nearly independent of reaction temperature during the polymerization of TFEA, the r‐specificity increased by lowering the reaction temperature during the polymerization of the other two monomers. The polymerization stereochemistry was also affected by the reaction solvents including toluene, tetrahydrofuran, and fluoroalcohols. It was noted that the stereochemistry of the polymerization of HFiPA and PFtBA also depended on the monomer concentration, and a lower monomer concentration led to a higher r‐specificity. By optimizing the aforementioned reaction conditions, the poly(HFiPA) having r = 81% (polymerization in tetrahydrofuran at −98 °C at [M]o = 0.2M) and the poly(PFtBA) having r = 77% (polymerization in toluene at −78 °C at [M]o = 0.2M) were obtained. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1024–1032, 2000  相似文献   

16.
The synthesis of tert-butyl acrylate by atom transfer radical polymerization (ATRP) is reported. This polymer was prepared using FeCl2 · 4H2O(PPh3)2 catalyst system in conjunction with methyl 2-bromopropionate as initiator, in bulk and in solution using acetone as a solvent. The addition of solvent was necessary in order to decrease the polymerization rate and to afford low polydispersity polymers. The number-average molecular weights of the resulting polymers increased in direct proportion to the monomer conversion, and the polydispersities (Mw/Mn) were as low as 1.2. In addition, the preparation of an AB diblock copolymer of poly (n-butyl methacrylate)-block-poly (tert-butyl acrylate) by ATRP is reported. The resulting polymers and copolymers were characterized by means of size exclusion chromatography and 1H-NMR Spectroscopy.  相似文献   

17.
Ethylene and different amounts of 1,7-octadiene were copolymerized using the metallocene catalyst system ethylidene-bis(fluorenyl) zirconium dichloride and methylaluminoxane (MAO) at both 50 and 90 °C. The catalyst activity has slightly increased with the addition of low amounts of the diene in relation to the homopolymerization of ethylene. The obtained polymers were characterized according to their melting temperature (Tm) and crystallinity degree (xc) by differential scanning calorimetry (DSC). Weight-average molecular weight (Mw) and polydispersity were determined by gel permeation chromatography (GPC). Diene contents in the copolymer were obtained through the FTIR spectroscopy. The results indicated that at polymerization temperature of 90 °C, crosslinking bonds in the obtained copolymers were low, differently from what was observed at 50 °C. The diene content in the copolymer achieved more than 3 mol% and the comonomer conversion was around 15%. Moreover, the obtained copolymers have Mw around 100,000 and large polydispersity.  相似文献   

18.
Kumada‐Tamao coupling polymerization of 1,4‐dialkoxy‐2‐bromo‐5‐(2‐chloromagnesiovinyl)benzene ( 1 ) and 1,4‐dialkoxy‐2‐(2‐bromovinyl)‐5‐chloromagnesiobenzene ( 2 ) with a Ni catalyst and Suzuki‐Miyaura coupling polymerization of 2‐{2‐[(2,5‐dialkoxy‐4‐iodophenyl)]vinyl}‐4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolane ( 3 ), its bromo counterpart 4 , and 2,5‐dialkoxy‐4‐(2‐bromovinyl)phenylboronic acid ( 5 ) with a Pd initiator were investigated under catalyst‐transfer condensation polymerization conditions for the synthesis of well‐defined poly(p‐phenylenevinylene) (PPV). The Kumada‐Tamao polymerization of vinyl Grignard‐type monomer 1 with Ni(dppp)Cl2 at room temperature did not proceed, whereas aryl Grignard‐type monomer 2 afforded oligomers of low molecular weight. Matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF) mass spectra of the polymer obtained from 2 implied that the Grignard end group reacted with tetrahydrofuran to terminate polymerization. On the other hand, Suzuki‐Miyaura polymerization of vinyl boronic acid ester type monomers 3 and 4 and phenylboronic acid type monomer 5 with a Pd initiator and aqueous KOH at ?20 °C to room temperature yielded the corresponding PPV with high molecular weight within a few minutes. However, the molecular weight distribution was broad, and MALDI‐TOF mass spectra showed the peaks of polymers bearing no initiator unit at the chain end, as well as those of polymers with the initiator unit. These results indicated that intermolecular chain transfer of the Pd catalyst occurred. Dehalogenation and disproportionation of the growing end also took place as side reactions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2643‐2653  相似文献   

19.
Alkali and earth‐alkali salts of dicyclopentadiene dicarboxylic acid (DCPDCA) were prepared and employed as monomers in the polyesterification with an α,ω‐dihalide monomer, such as 1,4‐dichlorobutane (DCB), 1,4‐dibromobutane (DBB), α,α′‐dichloro‐p‐xylene (DCX), and α,α′‐dibromo‐p‐xylene (DBX). Novel linear polymers that possessed repeating moieties of dicyclopentadiene ( DCPD ) in the backbone were thus prepared. The IR and NMR spectra indicated that poly(tetramethylene dicyclopentadiene dicarboxylate) (PTMDD) with a number‐average molecular weight (Mn ) of about 1× 104 and poly(p‐xylene dicyclopentadiene dicarboxylate) (PXDD) with a Mn of 4–6 × 103 were obtained with an yield of about 80% via the polyesterification of the alkali salts with DBB and DCX, respectively. The reaction was carried out in the presence of a phase transfer catalyst, such as BzMe3NBr or poly(ethylene glycol), in DMF at 100 °C for 4 h. Oligomers with a lower Mn (1–2 × 103) were obtained when the earth‐alkali salts were employed as salt monomers. Compared to the irreversible linear polymers, poly(p‐xylene terephthalate) (PXTP) and poly(p‐xylene maleate) (PXM), prepared through the reaction between DCX and the potassium salts of terephthalic and maleic acid, respectively, the specific viscosities (ηsp) of the new linear polymers increased abnormally with the decrease of the temperature from 200 °C to 100 °C. This occurred due to the thermally reversible dedimerization/redimerization of  DCPD moieties of the backbone of the polymers via the catalyst‐free Diels–Alder/retro Diels–Alder cycloadditive reactions. The ratio of the ηsp at 100 °C and 200 °C of the reversible polymers was found to be much higher than that of PXTP and PXM, even when the heating/cooling cycle was carried out several times under a N2 atmosphere. The obtained results indicated that thermally reversible covalently bonded linear polymer can be obtained by introducing the  DCPD structure into the backbone of the polymer through the polymerization of a monomer containing the  DCPD moiety. The reversible natures of the polymers and oligomers might be useful in preparing easily processable and recyclable polymers and thermosensor materials. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1662–1672, 2000  相似文献   

20.
High molecular weight polymers such as poly (α‐olefin)s play a key role as drag‐reducing agents which are commonly used in pipeline industry. Heterogeneous Ziegler–Natta catalyst system of MgCl2.nEtOH/TiCl4/donor was prepared using a spherical MgCl2 support and utilized in synthesis of poly(1‐hexene)s with a viscosity average molecular weight (Mv) up to 3.5 × 103 kDa. The influence of effective parameters including Al/Ti ratio, polymerization temperature, monomer concentration, effect of alkylaluminus type on the productivity, and molecular weight of the products was evaluated. It was suggested that the reactivity of the Al‐R group and the bulkiness of the cocatalyst were correlated to the performance of the Ziegler–Natta catalyst at different polymerization time and temperatures, affecting the catalyst activity and Mv of polymers. Moreover, bulk polymerization method leads to higher viscosity average molecular weights, revealing the remarkable effect of polymerization method on the chain microstructure. Fourier transform infrared, 13C Nuclear magnetic resonance spectra, and DSC thermogram of the prepared polymers confirmed the formation of poly(1‐hexene). The properties of the polymers measured by vortex test showed that these polymers could be used as a drag‐reducing agent. Drag‐reducing behaviors of the polymers exhibited a dependence on the Mv of the obtained polymers that was changed by variation in polymerization parameters. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号