首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human breath analysis is a powerful and especially a non-invasive technique for the monitoring and hopefully also for the diagnosis of respiratory diseases, including chronic obstructive pulmonary disease (COPD). The exhaled breath of 95 patients suffering COPD and of 35 healthy controls was investigated using an Ion Mobility Spectrometer (IMS) coupled to a Multi-Capillary Column (MCC) without any pre-separation or pre-enrichment. Starting with the results from a Mann–Whitney-Wilcoxon rank sum test to find analytes with the highest potential with respect to differentiation, box and whisker plots, metabolic maps and probability charts were introduced and compared. In addition, the sensitivity, specificity, positive and negative predictive values and the accuracy of the relation were also summarized. The findings were compared to the results of a principal component analysis. Finally, decision trees were introduced to visualize the interdependencies between the analytes and the classifications. The application of these biostatistical methods with simultaneous inclusion of several VOCs for disease classification by ion mobility spectrometry of human breath will provide much more information than using single peaks and single concentration dependencies for disease classification and discrimination of various groups. Towards the future application of potential biomarkers for clinical diagnostic procedures, complex analytical methods, such as ion mobility spectrometry, need statistical and bioinformatical tools which are simple in application, visualize the results and support decisions on the basis of the data obtained from measurements of analytes in exhaled human breath.  相似文献   

2.
COPD is a disease characterised by a chronic inflammation of the airways and a not fully reversible airway obstruction. The spirometry is considered as gold-standard to diagnose the disease and to grade its severity. In this study we used the methodology of Ion Mobility Spectometry in order to detect Volatile Organic Compounds (VOCs) in exhaled breath of patients with COPD. The purpose of this study was to investigate if the VOCs detected in patients with COPD were different from the VOCs detected in exhaled breath of healthy controls. 13 COPD patients and 33 healthy controls were included in the study. Breath samples were collected via a side-steam Teflon tube and directly measured by an ion mobility spectrometer coupled to a multi capillary column (MCC/IMS). One peak was identified only in the patients group compared to the healthy control group. Consequently, the analysis of exhaled breath could be a useful tool to diagnose COPD.  相似文献   

3.
Chronic obstructive pulmonary disease (COPD) is a major global health challenge with a gloom perspective of being one of the big three cause of death by 2020. No reliable/reproducible biomarker has been identified so far to match the clinically-based staging system (GOLD). Blood samples of 30 subjects divided into 6 groups (no-COPD/-smoker, no-COPD/non-smoker, COPD I, COPD II, COPD III, COPD IV) with 5 patients in each were tested by differential scanning calorimetry. There is a clear 15.4 % difference between the heat flow maxima measured when no-COPD subjects were compared in accordance to their smoking/non-smoking status. Odds ratio of different heat flow in actively smoking COPD patients in stage IV and stage I was 1.61. A reverse tendency is detected in the relevant non-smoking COPD groups. The differences are inconsistent in intermediate stages (COPD II and III). DSC seems to be an applicable and objective method for monitoring nicotine abuse. There is a chance to detect specific typology of thermokinetic patterns in the two extremes of COPD (I vs. IV). Further studies with increased sample size are needed to allow calculations on specificity/sensitivity/positive and negative predictive value of enthalpies and heat flow maximums. The first clinically relevant blood-based COPD marker on the intravascular side of the alveo-capillary screen is demonstrated by our pilot study.  相似文献   

4.
5.
Ion mobility Spectrometry is used to detect volatile analytes within human breath directly. Many volatile organic compounds (VOC) show significant day-to-day variation in the signal height related to the concentration of the analyte, although the breath collection had been performed under the same conditions with respect to similar sampling procedure, similar dead volume, similar measurement time, and measurement conditions. Variations of 8 different analytes are investigated over a time period of 11 months in the exhaled breath of the same person in the same room environment. The individual variability is reported for Benzothiazole; D-Limonene; Eucalyptol; Decamethylcyclopentasiloxane; Decanal; 1-Hexanol, 2-ethyl-; Cyclohexanone, 5-methyl-2-(1-methylethyl) and Nonanal. The paper shows, that the individual variability must be taken into consideration to relate the findings to medical questions. Therefore, the room air concentration of VOCs must be taken into account, so that the difference between exhaled and inhaled air has to be used as indicator. Finally, starting with individual variabilities, the normal variation related to the specific analyte should be considered in addition.  相似文献   

6.
Mass spectrometry (MS) has dramatically evolved in the last two decades and has been the driving force of the spectacular expansion of proteomics during this period. However, the very poor compatibility of MS with detergents is still a technical obstacle in some studies, in particular on membrane proteins. Indeed, the high hydrophobicity of membrane proteins necessitates the use of detergents for their extraction and solubilization. Here, we address the analytical potential of high-field asymmetric waveform ion mobility spectrometry (FAIMS) for separating peptides from detergents. The study was focused on peptides from the human integral membrane protein CD9. A tryptic peptide was mixed with the non-ionic detergents Triton X-100 or beta-D-dodecyl maltoside (DDM) as well as with the ionic detergents sodium dodecyl sulfate (SDS) or sodium deoxycholate (SDC). Although electrospray ionization (ESI) alone led to a total suppression of the peptide ion signal on mass spectra with only detection of the detergents, use of FAIMS allowed separation and clear identification of the peptide with any of the detergents studied. The detection and identification of the target compound in the presence of an excess of detergents are then feasible. FAIMS should prove especially useful in the structural and proteomic analysis of membrane proteins.  相似文献   

7.
Emissions from surfaces (from furniture, wall paintings or floor coverings for instance) significantly influence indoor air quality and therefore the wellbeing or even the health of the occupants. Together with metabolites from mold they are responsible for the well-known “sick building syndrome”. Therefore, it is in the interest of the manufacturer as well as of the occupants to have a fast and accurate method for the detection of substances relevant to this syndrome in order to be able to monitor and control product quality and indoor air quality. The use of small and easy-to-transport ion mobility spectrometers that use UV light as the ionization source enables rapid in situ detection of such substances with high selectivity and sensitivity (detection limits in the lower ppb range). If a multicapillary column is used for preseparation as well, the selectivity is increased and the unwanted influence of humidity on the spectra can be eliminated, thus enabling the use of the instruments under normal ambient conditions. Furthermore, the use of air as carrier gas avoids the need for other sources of high-purity gas. An emission cell with a homogeneous and constant air flow over the surface to be investigated was developed in order to ensure reproducible results. Investigations of emissions from wooden surfaces with and without additional contamination as well as from complex mixtures are presented. The results demonstrate that relevant emissions can be identified and quantified with high sensitivity and selectivity in under five minutes. Therefore, the method is useful for indoor air quality monitoring, especially when miniaturized instruments are applied. Figure  相似文献   

8.
Diseases of the lung, e. g. chronic obstructive pulmonary disease (COPD), interstitial lung diseases, bronchiectasis or cystic fibrosis, often lead to recurrent severe respiratory infections that cause exacerbations of the underlying disease. These acute or chronic inflammatory processes can result in a progressive destruction of the lung and in an ongoing decline in lung function. Therefore longer inpatient stays for intravenous antibiotic treatment are necessary and the quality of life in these patients is severely limited. A rapid detection of infectious agents in human lungs is often crucial, because the choice of the appropriate therapeutic regime depends at first on the identification of the infecting species. Standard methods for detection and identification are either time consuming, of low sensitivity or expensive. It is known that bacteria, and also mitosporic fungi, produce volatile organic compounds (VOCs) that can be detected in exhaled breath by ion mobility spectrometry (IMS), were a distinct detection of a specific VOC is related to a “peak”. We investigated, whether the detection and characterisation of VOCs by Multi-capillary column coupled to IMS in exhaled breath of patients whose airways are either infected or colonized by Pseudomonas aeruginosa compared to healthy non-smoker controls is capable of identifying those infectious agents. To realize a non invasive identification of pathogens, the exhaled breath of 53 persons (24 patients suffering chronic or infectious on Pseudomonas and 29 healthy controls) was investigated using an ion mobility spectrometer type BioScout. In total 224 different signals were found. Actually, 21 different signals are able to differentiate the two groups, Control and Pseudomonas, with rank sum values less than 0.2. For all 224 signals Box-and-Wisker plots were realized. The peaks with the lowest rank sum values F (0,107) and PS0 (0,112) show rather good separation of both groups. Our preliminary results demonstrate that distinct patterns of a small number of IMS-peaks are sufficient for the identification of these infectious agents. Therefore MCC-IMS seems to be a promising method for the non-invasive identification of patients which are colonized or infected with bacteria such as Pseudomonas aeruginosa.  相似文献   

9.
A correlation analysis of peaks found in IMS-Chromatograms was carried out to show the potential of the method in clinical applications. As an example, the data of exhaled breath of patients suffering infections of Pseudomonas were compared to healthy non-smokers. Using a rank sum calculation and providing a correlation table of all peaks found, delivers the basis for visualisation of highest ranked analytes. In addition, a consideration of positive and negative correlated peaks could support sub-grouping, if present. A set of signals could be found for discriminating the two groups of patients using MCC-IMS. Investigations of exhaled breath using ion mobility spectrometry seems to provide a promising means for the non-invasive identification of patients which are colonized or infected with bacteria such as Pseudomonas aeruginosa.  相似文献   

10.
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of morbidity and mortality in the United States and cigarette smoking is a primary determinant of the disease. COPD is characterized by chronic airflow limitation as measured by the forced expiratory volume in one second (FEV1). In this study, the plasma proteomes of 38 middle-aged or older adult smokers with mild to moderate COPD, with FEV1 decline characterized as either rapid (RPD, n?=?20) or slow or absent (SLW, n?=?18), were interrogated using a comprehensive high-throughput proteomic approach, the accurate mass and time (AMT) tag technology. This technology is based upon a putative mass and time tag database (PMT), high-resolution LC separations and high mass accuracy measurements using FT-ICR MS with a 9.4-T magnetic field. The peptide and protein data were analyzed using three statistical approaches to address ambiguities related to the high proportion of missing data inherent to proteomic analysis. The RPD and SLW groups were differentiated by 55 peptides which mapped to 33 unique proteins. Twelve of the proteins have known roles in the complement or coagulation cascade and, despite an inability to adjust for some factors known to affect lung function decline, suggest potential mechanistic biomarkers associated with the rate of lung function decline in COPD. Whether these proteins are the cause or result of accelerated decline will require further research.  相似文献   

11.
The stability and speed of the operation of sheath-flow inlet high temperature ion mobility spectrometer were studied over sampled mass fluxes in the range 0-50 ng s−1 for dichloromethane and ethyl acetate. The response to step-changes in sheath-flow in the region of 10 cm min−1 stabilised within 1.4 s, although, the recovery of a response on shutting down the sheath-flow could be longer if adsorptive memory effects had built up within the inlet at high concentrations. The effect of mass flux as opposed to sampled concentration was highlighted and the importance of the role of mixing in the reaction region in controlling ion spectrometric responses emphasised. The incorporation of a sheath-flow inlet into an automated feed-back control system was demonstrated with the system observed to maintain, without operator intervention, a linear response over an order of magnitude increase in the mass flux compared to the same instrument without the sheath-flow inlet fitted. The overall maximum sensitivity of the system was not significantly altered, and the drift time was not affected while the precision of the responses to test atmospheres was comparable to other ion mobility spectrometric systems with a RSD in the responses of less than 7%.  相似文献   

12.
Ion mobility coupled with mass spectrometry provides a fast and repeatable method to separate catechin epimers by previous complexation with selected chiral modifiers and transition metals. Several combinations with chiral ligands such as D‐ and L‐amino acids and/or additional metal cations, chiral crown ethers, tartaric acid and heptakis(2,6‐di‐O‐methyl)‐β‐cyclodextrin were screened for their ability to affect the separation efficiency. The clusters having the form of [2M + D‐amino acid + Cu2+ ? 3H]? (M stands for (?)‐epicatechin or (+)‐catechin) showed improvement in stereodifferentiation between two epimeric catechins in comparison to the analysis of pure epimers, where no separation was observed or the separation was hampered by the formation of mixed dimer complexes. Among various examined D‐amino acids only those possessing hydrophobic side chains induced the improvement of separation efficiency. The best peak‐to‐peak resolution (Rp–p) was determined to be 0.71 for [2M + D‐Leucine + Cu2+ ? 3H]? clusters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Kolakowski BM  Mester Z 《The Analyst》2007,132(9):842-864
High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) and Differential Mobility Spectrometry (DMS) harness differences in ion mobility in low and high electric fields to achieve a gas-phase separation of ions at atmospheric pressure. This separation is orthogonal to either chromatographic or mass spectrometric separation, thereby increasing the selectivity and specificity of analysis. The orthogonality of separation, which in some cases may obviate chromatographic separation, can be used to differentiate isomers, to reduce background, to resolve isobaric species, and to improve signal-to-noise ratios by selective ion transmission. This review will focus on the applications of these techniques to the separation of various classes of analytes, including chemical weapons, explosives, biologically active molecules, pharmaceuticals and pollutants. These papers cover the period up to January 2007.  相似文献   

14.
In this study, we used secondary electrospray ionization mass spectrometry assisted by an ion funnel (IF) operating at ambient pressure to find compounds in the mass range of 100–500 m/z in online breath fingerprinting experiments. In low‐resolution experiments conducted on an ion trap instrument, we found that pyridine is present in breath of individuals long after drinking coffee. In high‐resolution experiments conducted on a Fourier transform ion cyclotron resonance, we found more than 30 compounds in the mass range of 100–500 m/z in analogous online breath experiments. More than a third of these compounds have molecular weights above 200 Daltons and have not been mentioned in previous studies. In low‐resolution experiments as well as experiments without the IF, these compounds could not be detected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Asbury GR  Klasmeier J  Hill HH 《Talanta》2000,50(6):738-1298
The analysis of explosives with ion mobility spectrometry (IMS) directly from aqueous solutions was shown for the first time using an electrospray ionization technique. The IMS was operated in the negative mode at 250°C and coupled with a quadrupole mass spectrometer to identify the observed IMS peaks. The IMS response characteristics of trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), 2-amino-4,6-dinitrotoluene (2-ADNT), 4-nitrotoluene (4-NT), trinitrobenzene (TNB), cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX), cyclo-tetramethylene-tetranitramine (HMX), dinitro-ethyleneglycol (EGDN) and nitroglycerine (NG) were investigated. Several breakdown products, predominantly NO2 and NO3, were observed in the low-mass region. Nevertheless, all compounds with the exception of NG produced at least one ion related to the intact molecule and could therefore be selectively detected. For RDX and HMX the [M+Cl] cluster ion was the main peak and the signal intensities could be greatly enhanced by the addition of small amounts of sodium chloride to the sprayed solutions. The reduced mobility constants (K0) were in good agreement with literature data obtained from experiments where the explosives were introduced into the IMS from the vapor phase. The detection limits were in the range of 15–190 μg l−1 and all calibration curves showed good linearity. A mixture of TNT, RDX and HMX was used to demonstrate the high separation potential of the IMS system. Baseline separation of the three compounds was attained within a total analysis time of 6.4 s.  相似文献   

16.
Remarkable advances in mass spectrometry sensitivity and resolution have been accomplished over the past two decades to enhance the depth and coverage of proteome analyses. As these technological developments expanded the detection capability of mass spectrometers, they also revealed an increasing complexity of low abundance peptides, solvent clusters and sample contaminants that can confound protein identification. Separation techniques that are complementary and can be used in combination with liquid chromatography are often sought to improve mass spectrometry sensitivity for proteomics applications. In this context, high‐field asymmetric waveform ion mobility spectrometry (FAIMS), a form of ion mobility that exploits ion separation at low and high electric fields, has shown significant advantages by focusing and separating multiply charged peptide ions from singly charged interferences. This paper examines the analytical benefits of FAIMS in proteomics to separate co‐eluting peptide isomers and to enhance peptide detection and quantitative measurements of protein digests via native peptides (label‐free) or isotopically labeled peptides from metabolic labeling or chemical tagging experiments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
18.
The simplicity, sensitivity and expeditiousness of ion mobility spectrometry (IMS) make it especially useful for the determination of active principal ingredients (APIs) present at low concentrations in pharmaceuticals. However, the poor resolution of this technique precludes the identification and/or determination of substances with similar molecular weights, which exhibit also similar drift times and give overlapped peaks as a result. Oral contraceptives are pharmaceutical formulations containing two APIs of similar molecular weights at very low concentrations which therefore give strongly overlapped peaks hindering their determination by IMS. In this work, we assessed the potential of IMS for detecting and quantifying the contraceptives ethinylestradiol (ETE) and desogestrel (DES) in commercial tablets. To this end, we used various chemometric techniques including a second-derivative (TN2D) algorithm and the more powerful choice Multivariate Curve Resolution (MCR) to improve the resolution of IMS and enable the determination of both APIs. Quantitation was based on PLS1 models for each API. The models constructed involve a single PLS factor with a Y-explained variance above 98.4%, obtaining a RMSEP of 0.34 and 0.63 for ETE and DES, respectively. The ensuing method, which was validated for use in routine analyses, is quite expeditious (analyses take less than 1 min) and uses very small amounts of sample (a few microliters). Based on the results, IMS has a great potential for the qualitative and quantitative determination of APIs in low doses.  相似文献   

19.
The analysis of incurred material from animals treated with pharmacologically active substances is an efficient way to check the accuracy of a method. Tylosin A was chosen for the preparation of that material because it is highly effective in controlling active infections of American Foulbrood (AFB), a global threat to apiculture, but residues in honey are not allowed according to European legislation. For this reason an in-house reference material of honey containing the macrolide tylosin A and its degradation product desmycosin (tylosin B) was prepared. After the treatment of a beehive with the appropriate macrolide tylosin A, the honey samples were collected. The incurred honey material was diluted by mixing with blank honey. Concentrations of 25.81 μg kg(-1) for tylosin A and of 19.28 μg kg(-1) for its degradation product desmycosin (tylosin B) were reached. The homogeneity was checked by analysing 12 bottles in duplicate. The stability was tested at different defined temperatures and storage conditions. The reference material described above was homogeneous and stable. Samples of this in-house reference material were used for the realisation of a proficiency test with international participation. All participants accomplished satisfying results with the exception of one laboratory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号