首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Interfacial structures of water at polyvinyl alcohol (PVA) and poly(2-acrylamido-2-methypropane) sulfonic acid sodium salt (PNaAMPS)/quartz interfaces were investigated by sum frequency generation (SFG) spectroscopy. Two broad peaks were observed in OH stretching region at 3200 and 3400 cm(-1), corresponding to the symmetric OH stretching of tetrahedrally coordinated, i.e., strongly hydrogen bonded "ice-like" water, and the asymmetric OH stretching of water in a more random arrangement, i.e., weakly hydrogen bonded "liquid-like" water, respectively, in both cases. The "liquid-like" water became dominant when the PVA gel was pressed against the quartz surface. The relative intensity of the SFG signal due to the "liquid-like" water to that due to the "ice-like water" at the quartz surface modified with a self-assembled monolayer of aminopropyltrimethoxysilane (APS) became higher when the negatively charged PNaMPS gel was contacted to the APS modified quartz surface in a solution of pH = 12, where the surface was negatively charged and electrostatic repulsive interaction and low friction were present between the PNaMPS gel and the APS modified surface. It, however, did not change in a solution of pH = 2, where the surface was positively charged and electrostatic attractive interaction and very high friction were present between the PNaMPS gel and the APS modified surface. These results suggest the important role of water structure for small friction at the polymer gel/solid interface.  相似文献   

2.
Molecular dynamics simulation for gas/liquid interfaces of aqueous hydrochloric (HCl) and hydroiodic (HI) acid solutions is performed to calculate and analyze their sum frequency generation (SFG) spectra. The present MD simulation supports the strong preference of hydronium ions at the topmost surface layer and a consequent formation of ionic double layers by the hydronium and halide ions near the interface. Accordingly, the orientational order of surface water in the double layers is reversed in the acid solutions from that in the salt (NaCl or NaI). The calculated SFG spectra of the O-H stretching region reproduce the experimental spectra of ssp and sps polarizations well. In the ssp spectra, the strong enhancement in the hydrogen-bonding region for the acid solutions is elucidated by two mechanisms, ordered orientation of water in the double layer and symmetric OH stretching of the surface hydronium ions. In the sps spectra, reversed orientation of surface water is evidenced in the spectral line shapes, which are quite different from those of the salt solutions.  相似文献   

3.
The behavior of hydronium and hydroxide ions at the water/alkane, water/vapor, and water/rigid wall interfaces was investigated by means of molecular dynamics simulations. All these interfaces exhibit a strong affinity for hydronium, which is in agreement with spectroscopic and low pH zeta-potential measurements. Except for the water/rigid wall interface, which strongly structures water and weakly attracts OH(-), none of the other investigated interfaces shows an appreciable accumulation of hydroxide. This computational result is at odds with the interpretation of higher pH zeta-potential and titration experiments, however, it is supported by surface selective spectroscopies of the surface of water and hydroxide solutions.  相似文献   

4.
Infrared attenuated total reflection spectroscopy has been used to study the interaction of DMMP vapor with SiO(2), Al(2)O(3), and AlO(OH) vs relative humidity (RH) and DMMP partial pressure (P/P(0)). For SiO(2) the growth with increasing RH of ice-like and liquid-like layers is seen in agreement with previous work. H?D exchange during exposure to H(2)O and D(2)O indicates that the ice-like layer is more resistant to exchange, consistent with stronger H-bonding than in the liquid-like layer. Exposure of nominally dry SiO(2) to D(2)O indicates the existence of adsorbed H(2)O that does not exhibit an ice-like spectrum. The ice-like layer appears only at a finite RH. Exposure of SiO(2) to DMMP in the absence of intentionally added H(2)O shows the formation of a strongly bound molecular species followed by a liquid-like layer. The strong interaction involves SiO-H···O═P bonds to surface silanols and/or HO-H···O═P bonds to preadsorbed molecular H(2)O. At a finite RH the ice-like layer forms on SiO(2) even in the presence of DMMP up to P/P(0) = 0.30. DMMP does not appear to penetrate the ice-like layer under these conditions, and the tendency to form a such a layer drives the displacement of DMMP. Amorphous Al(2)O(3) and AlO(OH) do not exhibit an ice-like H(2)O layer. Both have a higher surface OH content than does SiO(2), which leads to higher coverages of H(2)O or DMMP at equivalent RH or P/P(0). At low P/P(0), for which adsorption is dominated by Al-OH···O═P bonding, a-Al(2)O(3) interacts with DMMP more strongly than does AlO(OH) as a result of the higher acidity of OH sites on the former. Up to RH = 0.30 and P/P(0) = 0.30, DMMP appears to remain bonded to the surface rather than being displaced by H(2)O. H(2)O appears to have little or no effect on the total amount of DMMP adsorbed on any of these surfaces, up to an RH of 0.30 and a P/P(0) of 0.30. The results have implications for the transport of DMMP and related molecules on oxide surfaces in the environment.  相似文献   

5.
Spectroscopic probes of the quasi-liquid layer on ice   总被引:1,自引:0,他引:1  
Raman spectra of the water OH-stretch region were acquired at air-ice and air-water interfaces at a glancing angle, which allowed observation of surface characteristics. The shapes of the OH-stretch bands indicate that the environment at the air-ice interface is different from that at the air-water interface and from that seen in bulk water. Water spectra measured at the surface of dodecane under low relative humidity indicate that this method is sensitive to fewer than 50 monolayers of water. Changes in the local environment of the surfacial water molecules may be induced by the presence of different solute species, giving rise to changes in the shape of the band. Dissolved sodium chloride disrupts hydrogen bonding in liquid water and has the same effect at the air-ice interface. However, when either HCl or HNO(3) is adsorbed from the gas phase onto an ice surface, the opposite effect is seen: Their presence appears to increase the extent of hydrogen bonding at the ice surface. At the same time, shifts in the laser-induced fluorescence spectra of acridine, a fluorescent pH-probe present at the air-ice interface, indicate that dissociation of acids occurs there. These observations suggest that the formation of hydronium ions at the air-ice interface enhances the hydrogen bonding of surfacial water molecules.  相似文献   

6.
The molecular structure of the interfacial regions of aqueous electrolytes is poorly understood, despite its crucial importance in many biological, technological, and atmospheric processes. A long-term controversy pertains between the standard picture of an ion-free surface layer and the strongly ion specific behavior indicating in many cases significant propensities of simple inorganic ions for the interface. Here, we present a unified and consistent view of the structure of the air/solution interface of aqueous electrolytes containing monovalent inorganic ions. Molecular dynamics calculations show that in salt solutions and bases the positively charged ions, such as alkali cations, are repelled from the interface, whereas the anions, such as halides or hydroxide, exhibit a varying surface propensity, correlated primarily with the ion polarizability and size. The behavior of acids is different due to a significant propensity of hydronium cations for the air/solution interface. Therefore, both cations and anions exhibit enhanced concentrations at the surface and, consequently, these acids (unlike bases and salts) reduce the surface tension of water. The results of the simulations are supported by surface selective nonlinear vibrational spectroscopy, which reveals among other things that the hydronium cations are present at the air/solution interface. The ion specific propensities for the air/solution interface have important implications for a whole range of heterogeneous physical and chemical processes, including atmospheric chemistry of aerosols, corrosion processes, and bubble coalescence.  相似文献   

7.
Five molecular dynamics computer simulations were performed to study the structural and dynamical properties of water next to uncharged and charged Pt surfaces. The results show that the structure of a water layer adsorbed on the metal surface is very sensitive to the details of the water–metal potential. While patches of short-living hexagonal ice-like structure are observed in the adsorbed water layer next to the uncharged Pt(111) surface, a square lattice solid-like structure is seen for the layer on top of the uncharged Pt(100) surface. The orientational ordering for the following two layers of water next to uncharged Pt is displaying a preference towards the orientations that are characteristic of hexagonal ice-I, while water is liquid-like in these layers. In the presence of a high value external electric field water reorients and undergoes a layering transition.  相似文献   

8.
The propensity of hydroxide and hydronium ions to accumulate at interfaces is the subject of ongoing scientific debate. Electrokinetic and surface force measurements suggest elevated interfacial concentrations of hydroxide ions across a wide range of pHs. Contrary to this, however, surface-sensitive spectroscopic techniques and molecular dynamic (MD) simulations indicate that hydronium ions have strong surface affinity under similar conditions. Here we review results obtained for gas/water, oil/water and solid/water interfaces. Emphasis is placed on ion adsorption phenomena occurring on polymer films of different hydrophobicity and structure. The results clearly show that asymmetric water ion adsorption is independent of the hydrophobicity of the solid surface. Recently obtained data reveal significant effects of the hydroxide and hydronium ions even on the charging of hydrophobic polymers in the presence of multivalent electrolytes and on the charging of zwitterionic lipid membranes.  相似文献   

9.
Autoionization of water which gives rise to its pH is one of the key properties of aqueous systems. Surfaces of water and aqueous electrolyte solutions are traditionally viewed as devoid of inorganic ions; however, recent molecular simulations and spectroscopic experiments show the presence of certain ions including hydronium in the topmost layer. This raises the question of what is the pH (defined using proton concentration in the topmost layer) of the surface of neat water. Microscopic simulations and measurements with atomistic resolution show that the water surface is acidic due to a strong propensity of hydronium (but not of hydroxide) for the surface. In contrast, macroscopic experiments, such as zeta potential and titration measurements, indicate a negatively charged water surface interpreted in terms of preferential adsorption of OH(-). Here we review recent simulations and experiments characterizing autoionization at the surface of liquid water and ice crystals in an attempt to present and discuss in detail, if not fully resolve, this controversy.  相似文献   

10.
In situ infrared visible sum frequency generation spectroscopy (SFG) is used to examine the structure of water at the Ag-water interface in NaF and KF electrolyte solutions. Water is observed in environments associated with both the electrode surface and the diffuse double layer. Peaks are observed that are correlated with low-order water, water interacting with electrolyte ions, specifically adsorbed water to the electrode surface, and hydronium. Spectra obtained from a thiol-modified Ag surface enabled discrimination between surface-bound water and that in the double layer. The water organization is dependent on applied potential, with the observed intensities for specifically adsorbed and ion solvating water diminishing near the pzc.  相似文献   

11.
How water layer adsorbed on solid surface under ambient conditions affects the interfacial friction is a fundamental question for understanding the friction and lubrication phenomena in practical system. We investigate the formation of ice-like(IL) water layers on the hydrophobic surface of graphite with partially covered MoO3 nanoflakes(NFs) using atomic force microscopy(AFM) based techniques. The IL water layers are found surrounding the MoO3 NFs and also intercalated at the MoO3/graphite interface, as proved by thickness measurements as well as local adhesion force and surface potential mappings. AFM manipulations carried out on MoO3 NFs on graphite show that the presence of the IL water layers increases the frictional resistance of the interface. Comparing the results on continuous and discontinuous IL water layers, we can identify the different sliding interfaces in the two scenarios. The increased friction for MoO3 NFs sliding on graphite with an intercalated water layer is attributed to the energy dissipation originated from the metastable nature of the IL layers.  相似文献   

12.
The surface tension of the air—water interface increases upon addition of inorganic salts, implying a negative surface excess of ionic species. Most acids, however, induce a decrease in surface tension, indicating a positive surface excess of hydrated protons. In combination with the apparent negative charge at pure air–water interfaces derived from electrokinetic experiments, this experimental observation has been a source of intense debate since the mid‐19th century. Herein, we calculate surface tensions and ionic surface propensities at air–water interfaces from classical, thermodynamically consistent molecular dynamics simulations. The surface tensions of NaOH, HCl, and NaCl solutions show outstanding quantitative agreement with experiment. Of the studied ions, only H3O+ adsorbs to the air–water interface. The adsorption is explained by the deep potential well caused by the orientation of the H3O+ dipole in the interfacial electric field, which is confirmed by ab initio simulations.  相似文献   

13.
Lipid/water interfaces and associated interfacial water are vital for various biochemical reactions, but the molecular-level understanding of their property is very limited. We investigated the water structure at a zwitterionic lipid, phosphatidylcholine, monolayer/water interface using heterodyne-detected vibrational sum frequency generation spectroscopy. Isotopically diluted water was utilized in the experiments to minimize the effect of intra/intermolecular couplings. It was found that the OH stretch band in the Imχ((2)) spectrum of the phosphatidylcholine/water interface exhibits a characteristic double-peaked feature. To interpret this peculiar spectrum of the zwitterionic lipid/water interface, Imχ((2)) spectra of a zwitterionic surfactant/water interface and mixed lipid/water interfaces were measured. The Imχ((2)) spectrum of the zwitterionic surfactant/water interface clearly shows both positive and negative bands in the OH stretch region, revealing that multiple water structures exist at the interface. At the mixed lipid/water interfaces, while gradually varying the fraction of the anionic and cationic lipids, we observed a drastic change in the Imχ((2)) spectra in which spectral features similar to those of the anionic, zwitterionic, and cationic lipid/water interfaces appeared successively. These observations demonstrate that, when the positive and negative charges coexist at the interface, the H-down-oriented water structure and H-up-oriented water structure appear in the vicinity of the respective charged sites. In addition, it was found that a positive Imχ((2)) appears around 3600 cm(-1) for all the monolayer interfaces examined, indicating weakly interacting water species existing in the hydrophobic region of the monolayer at the interface. On the basis of these results, we concluded that the characteristic Imχ((2)) spectrum of the zwitterionic lipid/water interface arises from three different types of water existing at the interface: (1) the water associated with the negatively charged phosphate, which is strongly H-bonded and has a net H-up orientation, (2) the water around the positively charged choline, which forms weaker H-bonds and has a net H-down orientation, and (3) the water weakly interacting with the hydrophobic region of the lipid, which has a net H-up orientation.  相似文献   

14.
The evaporation rate of water molecules across three kinds of interfaces (air/water interface (1), air/surfactant solution interface (2), and air/water interface covered by insoluble monolayer (3)) was examined using a remodeled thermogravimetric balance. There was no difference in both the evaporation rate and the activation energy for the first two interfaces for three types of surfactant solutions below and above the critical micelle concentration (cmc). This means that the molecular surface area from the Gibbs surface excess has nothing to do with the evaporation rate. In the third case, the insoluble monolayer of 1-heptadecanol decreased the evaporation rate and increased the activation energy, indicating a clear difference between an insoluble monolayer and an adsorbed film of soluble surfactant. This difference was substantiated by BAM images, too. The images of three surfactant solution interfaces were similar to that of just the water surface, while distinct structures of molecular assemblies were observed for the insoluble monolayer. The concentration profile of water molecules in an air/liquid interfacial region was derived by Fix's second law. The profile indicates that a definite layer just beneath the air/liquid interface of the surfactant solution is made mostly of water molecules and that the layer thickness is a few times the root-mean-square displacement %@mt;sys@%%@rl;;@%2%@ital@%Dt%@rsf@%%@rlx@%%@mx@% of the water molecules. The thickness was found to be more than a few nanometers, as estimated from several relaxation times derived from the other kinetics than evaporation of amphiphilic molecules in aqueous systems and a maximum evaporation rate of purified water.  相似文献   

15.
Electrophoresis is widely used to determine the electrostatic potential of colloidal particles. Oil droplets in pure water show negative or positive electrophoretic mobilities depending on the pH. This is commonly attributed to the adsorption of hydroxyl or hydronium ions, resulting in a negative or positive surface charge, respectively. This explanation, however, is not in agreement with the difference in isoelectric point and point of zero charge observed in experiment. Here we present molecular dynamics simulations of oil droplets in water in the presence of an external electric field but in the absence of any ions. The simulations reproduce the negative sign and the order of magnitude of the oil droplet mobilities at the point of zero charge in experiment. The electrostatic potential in the oil with respect to the water phase, induced by anisotropic dipole orientation in the interface, is positive. Our results suggest that electrophoretic mobility does not always reflect the net charge or electrostatic potential of a suspended liquid droplet and, thus, the interpretation of electrophoresis in terms of purely continuum effects may need to be reevaluated.  相似文献   

16.
We report new molecular dynamics results elucidating the structure of the electrical double layer (EDL) on smectite surfaces contacting mixed NaCl-CaCl(2) electrolyte solutions in the range of concentrations relevant to pore waters in geologic repositories for CO(2) or high-level radioactive waste (0.34-1.83 mol(c) dm(-3)). Our results confirm the existence of three distinct ion adsorption planes (0-, β-, and d-planes), often assumed in EDL models, but with two important qualifications: (1) the location of the β- and d-planes are independent of ionic strength or ion type and (2) "indifferent electrolyte" ions can occupy all three planes. Charge inversion occurred in the diffuse ion swarm because of the affinity of the clay surface for CaCl(+) ion pairs. Therefore, at concentrations ≥0.34 mol(c) dm(-3), properties arising from long-range electrostatics at interfaces (electrophoresis, electro-osmosis, co-ion exclusion, colloidal aggregation) will not be correctly predicted by most EDL models. Co-ion exclusion, typically neglected by surface speciation models, balanced a large part of the clay mineral structural charge in the more concentrated solutions. Water molecules and ions diffused relatively rapidly even in the first statistical water monolayer, contradicting reports of rigid "ice-like" structures for water on clay mineral surfaces.  相似文献   

17.
18.
We report ab initio molecular dynamics simulations of hydroxide and hydronium ions near a hydrophobic interface, indicating that both ions behave like amphiphilic surfactants that stick to a hydrophobic hydrocarbon surface with their hydrophobic side. We show that this behavior originates from the asymmetry of the molecular charge distribution which makes one end of the ions strongly hydrophobic while the other end is even more hydrophilic than the regular water (H2O) molecules. The effect is more pronounced for the hydroxide than for the hydronium. Our results are consistent with several experimental observations and explain why hydrophobic surfaces in contact with water acquire a net negative charge, a phenomenon that has important implications for biology and polymer science.  相似文献   

19.
Antifreeze proteins (AFPs) are found in different species from polar, alpine, and subarctic regions where they serve to inhibit ice crystal growth by adsorption to ice surfaces. Computational methods have the power to investigate the antifreeze mechanism in atomic detail. Molecular dynamics simulations of water under different conditions have been carried out to test our water model for simulations of biological macromolecules in extreme conditions: very low temperatures (200 K) and at the ice/liquid water interface. We show that the flexible F3C water model reproduces properties of water in the solid phase (ice I(h)), the supercooled liquid phase, and at the ice/liquid water interface. Additionally, the hydration of the type III AFP from ocean pout was studied as a function of temperature. Hydration waters on the ice-binding surface of the AFP were less distorted and more tetrahedral than elsewhere on the surface. More ice-like hydrating water structures formed on the ice-binding surface of the protein such that it created an ice-like structure in water within its first hydration layer but not beyond, suggesting that this portion of the protein has high affinity for ice surfaces.  相似文献   

20.
We have investigated the electrochemical interface between diamond electrodes and aqueous electrolytes using electrochemical techniques such as cyclic voltammetry and ac impedance spectroscopy. High-quality CVD-grown boron-doped polycrystalline diamond electrodes and IIa single crystalline natural diamond electrodes have been used in this study. In the case of hydrogen-terminated diamond electrodes, the electrochemical interface is dominated by the electrochemical double layer. Frequency-dependent impedance spectroscopy reveals a potential regime in which the contribution of ion adsorption becomes relevant. We have conducted experiments to evaluate the effect of pH and ionic strength on the double layer. Our results suggest that only ions resulting from water auto-dissociation, i.e., hydroxide and hydronium ions, are responsible for ion adsorption and, thus, able to modify the charge at the double layer. In contrast, no effect of the adsorption of several dissolved ions (such as Na+, K+, Cl-) has been observed On the basis of the electrochemical characterization of H-terminated diamond surfaces, we also discuss the phenomenon of the surface conductivity in diamond, as well as the pH sensitivity of the diamond surface. The influence of the O2/OH- and H2/H3O+ redox couples on the origin of the surface conductivity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号