首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文将实验结果和软件模拟图像相结合,从结晶学角度探讨了通过L-半胱氨酸自组装单层诱导得到的不同形貌方解石晶体的成因. 阐明了晶体的SEM照片与XRD谱峰的对应关系.  相似文献   

2.
通过液固界面上的溶解-沉淀耦合反应在Ba(NO3)2乙醇-水溶液中实现了毒重石晶型的碳酸钡在方解石(CaCO3)晶体基底上的外延生长, 得到碳酸钡的单晶微米锥阵列. 碳酸钡微米锥的长轴平行于毒重石晶体的[001]方向,同时也与方解石基底[001]晶向相同, 其俯视图为六边形, 具有近似的六方对称性. 随反应时间的增加, 外延生长形成的碳酸钡微米锥的尺寸增加, 但其轴径比逐渐减小. 通过改变乙醇-水混合溶剂中的乙醇含量或者Ba(NO3)2浓度也能调控碳酸钡晶体的尺寸和形貌. 随着混合溶剂中乙醇含量与Ba(NO3)2浓度的提高, 溶液中BaCO3的过饱和度增加, 通过外延生长在方解石的(104)表面形成的BaCO3阵列结构的密集程度逐渐增加, 尺寸逐渐减小, 形貌从微米锥逐渐转变为微米柱状结构. 经过对晶化过程及毒重石和方解石晶体结构分析,提出了在方解石表面外延生长形成的毒重石微米锥单晶阵列结构的形成过程机理: 该过程为界面溶解-沉淀耦合反应的过程,方解石的溶解和毒重石的外延生长过程同时进行, 由于两种晶体在方解石基底的(104)晶面与(001)晶面上具有中高度错配值, 毒重石晶体在方解石的这两个晶面上发生Volmer-Weber型的外延生长, 逐渐形成在靠近基底处包覆有方解石台阶的毒重石微米锥单晶阵列结构.  相似文献   

3.
Epitaxial relationships between the surfaces of inorganic and bioorganic crystals can be an important factor in crystal nucleation and growth processes in a variety of biological environments. Crystalline cholesterol monohydrate (ChM), a constituent of both gallstone and atherosclerotic plaques, is often found in association with assorted mineral phases. Using in situ atomic force microscopy (AFM) and well-characterized model bile solutions, the nucleation and epitaxial growth of ChM on calcite (104) surfaces in real-time is demonstrated. The growth rates of individual cholesterol islands formed on calcite substrates were determined at physiological temperatures. Evidence of Ostwald's ripening was also observed under these experimental conditions. The energetics of various (104) calcite/(001) ChM interfaces were calculated to determine the most stable interfacial structure. These simulations suggest that the interface is fully hydrated and that cholesterol hydroxyl groups are preferentially positioned above carbonate ions in the calcite surface. This combination of experimental and theoretical work provides a clearer picture of how preexisting mineral seeds might provide a viable growth template that can reduce the energetic barrier to cholesterol nucleation under some physiological conditions.  相似文献   

4.
As crystallization processes are often rapid, it can be difficult to monitor their growth mechanisms. In this study, we made use of the fact that crystallization proceeds more slowly in small volumes than in bulk solution to investigate the effects of the soluble additives Mg2+ and poly(styrene sulfonate) (PSS) on the early stages of growth of calcite crystals. Using a “Crystal Hotel” microfluidic device to provide well‐defined, nanoliter volumes, we observed that calcite crystals form via an amorphous precursor phase. Surprisingly, the first calcite crystals formed are perfect rhombohedra, and the soluble additives have no influence on the morphology until the crystals reach sizes of 0.1–0.5 μm for Mg2+ and 1–2 μm for PSS. The crystals then continue to grow to develop morphologies characteristic of these additives. These results can be rationalized by considering additive binding to kink sites, which is consistent with crystal growth by a classical mechanism.  相似文献   

5.
The modification of CaCO(3) crystal growth by synthetic L-Ser(PO(3)H(2)) and L-Thr(PO(3)H(2)) containing polypeptides is described. The amino acids Gly, L-Glu, L-Asp, L-Ser, L-Ala, and L-Lys induced rhombohedral calcite with a rough surface. Dipeptides, Xaa-L-Ser(PO(3)H(2)) (Xaa = Gly, L-Glu, L-Asp, L-Ser, L-Ala and L-Lys) induced vaterite crystals in the lower [Ca(2+)]. On the other hand, L-Ser(PO(3)H(2))-containing polypeptides formed spherical vaterite and fibrous calcite. The characteristic helical calcite was found in the presence of copoly[L-Ser(PO(3)H(2))(75)L-Asp(25)] or poly[L-Ser(PO(3)H(2))(3)-L-Asp]. Fibrous calcite, spherical vaterite, and helical calcite crystals were subjected to XRD and EDX analysis. XRD revealed the specific faces of these crystals. EDX spectra and surface analysis visualized the localization of the polypeptides and CaCO(3) components. Together with TEM and SAED data, we propose hypothetical growth mechanisms for the fibrous and helical calcite crystals.  相似文献   

6.
The marked effects of chemical structure on the morphology of single crystals in linear aliphatic polyesters have been investigated. Drawn fibers and solution-grown crystals of poly(ethylene sebacate), poly(hexamethylene sebacate), and poly(decamethylene 1,16-hexadecanedicarboxylate) have been studied by small-angle and wide-angle x-ray diffraction. Electron microscopy, and broadline NMR provided supplementary information. The crystal disorder due to irregularity in the cross section of the molecule due to ester groups along the chain direction increases with increase of the methylene sequence length in the chemical repeat unit. On the basis of the x-ray data and electron microscopy, it is proposed that the nature of the fold surface of single crystals of a given polymer, especially a choice of (001) or (hkl) fold surface (flat lamellae or hollow pyramidal crystals), is determined by energetic competition effects between fold geometry and unit cell symmetry. A smooth increase of the long period with increasing crystallization and annealing temperature seems to be general behavior even when a pronounced stepwise increase might be anticipated.  相似文献   

7.
An organic hydrogel as a matrix for the growth of calcite crystals   总被引:1,自引:0,他引:1  
The growth of calcite in an aqueous gel of was studied and the appearance of the crystals was found to change over time. Crystals removed from the gel at progressively longer times showed severely affected surfaces resulting from dissolution. If crystals were removed from the gel after 3.5 hours, at which point there were no etch pits, and then placed in either buffer or pure water, etch pits, similar to those observed on crystals that are left in the gel, were observed. Control calcite crystals exposed to similar conditions (water or buffer) show no significant dissolution after equivalent times. A probable cause of the altered dissolution is the non-specific occlusion of gelator aggregates at sites of imperfection. The gel appears to provide a microenvironment in which the molecules that form the matrix also participate in the crystallization. This system allows the study of the unique properties of a gel for influencing the nucleation and growth of inorganic crystals, some of which may be important for better understanding biomineralization.  相似文献   

8.
The rate of dissolution of surface-treated calcite crystals in aqueous acidic solution has been studied using an adaptation of the channel flow cell method with microdisc electrode detection. Surface treatments of calcite with sulfuric acid lead to the nucleation of gypsum overgrowths, which reduce the rate of dissolution of calcite. Rate constants for untreated calcite and calcite pretreated with sulfuric acid conditions of 0.01 M for 1 h, 0.05 M for 5 h, and 0.1 M for 21 h are found to be 0.035, 0.018, 0.006, and 0.004 cm s(-1), respectively. Deterioration of calcite materials caused by acid deposition was investigated by field exposure of untreated and sulfate pretreated calcite rocks under urban conditions for 12 months. The rate constant for both pretreated and untreated calcite exposed to weathering is 0.003 cm s(-1). This suggests that calcite self-passivates the surface from further reaction when exposed to acid deposition. However, surface studies indicate that the surface undergoes erosion and dissolution before passivation. Pretreatment of the surface with sulfate protects the surface from acid deposition so it remains less reactive toward acid compared with untreated calcite. Copyright 2001 Academic Press.  相似文献   

9.
This paper describes the control of the nucleation and growth of calcite crystals by a matrix composed of an agarose hydrogel on top of a carboxylate-terminated self-assembled monolayer (SAM). The design of this matrix is based upon examples from biomineralization in which hydrogels are coupled with functionalized, organic surfaces to control, simultaneously, crystal morphology and orientation. In the synthetic system, calcite crystals nucleate from the (012) plane (the same plane that is observed in solution growth). The aspect ratio (length/width) of the crystals decreases from 2.1 +/- 0.22 in solution to 1.2 +/- 0.04 in a 3 w/v % agarose gel. One possible explanation for the change in morphology is the incorporation of gel fibers inside of the crystals during the growth process. Etching of the gel-grown crystals with deionized water reveals an interpenetrating network of gel fibers and crystalline material. This work begins to provide insight into why organisms use hydrogels to control the growth of crystals.  相似文献   

10.
For biomineralization processes, the interaction of the surface of calcite crystals with organic molecules is of particular importance. Especially, biologically controlled biomineralization as in exoskeletons of mollusks and echinoderms, e.g., sea urchin with single-crystal-like spines and shells,1-3 requires molecular control of seed formation and growth process. So far, experiments showing the obvious influence of organic molecules on the morphology and habit of calcite crystals have demonstrated the molecular dimension of the interaction.4-7 Details of the kinetics of growth and dissolution of mineral surfaces influenced by additives are available,8,9 but other experimental data about the structure of the organic/inorganic interface on the atomic scale are rare. On the other hand, complicated organic macromolecules which are involved in biomineralization are numerous, with only a small fraction solved in structure and function so far.10-13 Therefore, model systems have to be designed to provide a basic understanding for the interaction process.14 Using grazing incidence X-ray diffraction combined with molecular modeling techniques, we show that glycine molecules order periodically on the calcite (104) face in competition with the solvent water when exposed to an aqueous solution of the most simple amino acid. In contrast to the general concept of the charge-matching fit of organic molecules on mineral surfaces,4,14 glycine is not attached to the calcite surface directly but substitutes for water molecules in the second hydration layer.  相似文献   

11.
The crystal growth of calcite, the most stable calcium carbonate polymorph, in the presence of the cysteine-rich Mdm2 peptide (containing 48 amino acids in the ring finger configuration), has been investigated by the constant composition technique. Crystallization took place exclusively on well-characterized calcite crystals in solutions supersaturated only with respect to this calcium carbonate salt. The kinetic results indicated a surface diffusion spiral growth mechanism. The presence of the Mdm2 peptide inhibited the crystal growth of calcite by 22-58% in the concentration range tested, through adsorption onto the active growth sites of the calcite crystal surface. The kinetic results favored a Langmuir-type adsorption model, and the value of the calculated affinity constant was k(aff)=147x10(4) dm(3)mol(-1), a(ads)=0.29.  相似文献   

12.
Novel rod-shaped calcite crystals are formed by precipitation from cetyltrimethylammonium bromide (CTAB)/1-pentanol/cyclohexane microemulsions containing calcium chloride and ammonium carbonate. The calcium carbonate initially precipitates as hexagon-shaped vaterite crystals. The vaterite crystals transform to unusual rod-shaped calcite crystals over several days. The rod-shaped calcite crystals are prismatic, with the longest crystal axis displaying (110) crystal faces. A possible mechanism of crystal growth is discussed. The elongated shape of the crystals facilitates the assembly into hierarchical structures and can allow the crystals to be used as templates for fabricating advanced materials.  相似文献   

13.
利用微量过饱和静置法,在柠檬酸缓冲液中培养出可供X射线结构分析用的去B链N端二肽(B_(1-2))猪胰岛素单晶。晶体衍射分辨率达到4.0A以上。晶体属于立方晶系,a=97.43A,空间群为P4_132(或P4_332),每个结晶学不对称单位含两个或三个去B链N端二肽(B_(1-2))猪胰岛素分子。本文对单位晶胞内六聚体之间和二聚体之间可能的堆积方式进行了讨论。  相似文献   

14.
Investigation of basic interactions between the active pharmaceutical compounds and calcium carbonates is of great importance because of the possibility to use the carbonates as a mineral carrier in drug delivery systems. In this study the mode and extent of interactions of salicylic acid and its amino acid derivates, chosen as pharmaceutically relevant model compounds, with calcite crystals are described. Therefore, the crystal growth kinetics of well defined rhombohedral calcite seed crystals in the systems containing salicylic acid (SA), 5-amino salicylic acid (5-ASA), N-salicyloil-l-aspartic acid (N-Sal-Asp) or N-salicyloil-l-glutamic acid (N-Sal-Glu), were investigated. The precipitation systems were of relatively low initial supersaturation and of apparently neutral pH. The data on the crystal growth rate reductions in the presence of the applied salicylate molecules were analyzed by means of Cabrera & Vermileya's, and Kubota & Mullin's models of interactions of the dissolved additives and crystal surfaces. The crystal growth kinetic experiments were additionally supported with the appropriate electrokinetic, spectroscopic and adsorption measurements. The Langmuir adsorption constants were determined and they were found to be in a good correlation with values obtained from crystal growth kinetic analyses. The results indicated that salicylate molecules preferentially adsorb along the steps on the growing calcite surfaces. The values of average spacing between the adjacent salicylate adsorption active sites and the average distance between the neighboring adsorbed salicylate molecules were also estimated.  相似文献   

15.
Calcium carbonate was deposited on a stainless steel surface with the use of an electrical potential of 10 V. The crystals formed on the surface were examined with X-ray diffraction and with scanning electron microscopy, which revealed that calcite, vaterite and amorphous calcium carbonate was formed. Two different surface active polymers were added to the solution and their effect on the crystal structure was investigated. It was found that the more hydrophilic of the two polymers promoted calcite growth and suppressed vaterite growth. The more hydrophobic polymer completely inhibited vaterite growth. Both polymers decreased the amount of crystals formed on the steel surface, the more hydrophobic polymer being the most effective. The crystal inhibition efficiency was enhanced close to the cloud point of the polymers. The results were compared with the effect of poly(acrylic acid), a commonly used antiscalant. It was found that poly(acrylic acid) was about as efficient as the more hydrophobic polymer in decreasing the amount of calcium carbonate. At higher concentrations of poly(acrylic acid), almost all of the calcium carbonate precipitated in the amorphous form.  相似文献   

16.
The adsorption of 14 trivalent lanthanoid ions and yttrium ion (denoted by Ln3+) on calcite surfaces was investigated under various solution conditions of pH (pH = 6.8-7.8) and calcium ion concentration (pCa = -log[Ca2+]= 2.0 and 3.0), and different surface conditions of calcite crystals (well-developed and rough surfaces). The lanthanoid ions were equilibrated in a solution of ionic strength 0.1 mol dm-3(NaCl) saturated with calcite at 25.0 degrees C using excess (solid) calcite crystals suspended in solution. The concentrations of the lanthanoid ions on the calcite crystals (C(cry)/mol kg-1) and in solution (C(soln)/mol dm-3) were determined by means of inductively coupled plasma-mass spectrometry (ICP-MS). It is found that the distribution ratio (D=C(cry)/C(soln) decreases as the atomic number of the lanthanoid increases showing the so called Tetrad Effect. D values increase with increasing pH, whereas they are independent of the calcium ion concentration (i.e., carbonate ion concentration). These results indicate that lanthanoid ions are adsorbed on the calcite surface together with hydroxide ions, i.e., the adsorption of hydroxo-complexes. The heavy lanthanoid ions (Er3+ to Lu3+) are adsorbed as monohydroxo-complexes, (Ln(OH)2+), whereas those of the light lanthanoids are predominantly adsorbed as dihydroxo-complexes (Ln(OH)2+). Other lanthanoids show competitive adsorption reactions of mono- and dihydroxo complexes. Both successive adsorption constants of hydroxo complexes increase with decreasing atomic number of the lanthanoid. The rough surface of calcite is quite active and the distribution ratio of the lanthanoid ions on the rough surface is much higher than that on the well-developed crystalline surface. Rates of adsorption of lanthanide ions were measured and mechanisms are being discussed  相似文献   

17.
We have investigated the crystal growth of the organic semiconductor pentacene by complementing molecular simulations of surface energies with experimental images of pentacene films. Pentacene thin films having variations in thickness and grain size were produced by vacuum sublimation. Large (approximately 20 microm) faceted crystals grew on top of the underlying polycrystalline thin film. The films were characterized using optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Single crystals most commonly grew in a truncated diamond shape with the largest crystal face, (001), growing parallel to the substrate. Crystal morphologies and surface energies were calculated using force field-based molecular simulations. The (001) surface was found to have the lowest energy, at 76 mJ/m(2), which was consistent with experimental observations of crystal face size. It was demonstrated that the morphology of the large faceted crystals approached the equilibrium growth shape of pentacene. From contact angle measurements, the critical surface tension of textured pentacene thin films in air was determined to be 34 mJ/m(2).  相似文献   

18.
Recent experimental work has shown that the addition of styrene molecules to hydrogen-terminated Si(001) surfaces leads to the formation of one-dimensional molecular structures through a radical-initiated surface chain reaction mechanism. These nanometric structures are observed to be directed parallel to the dimer rows on the H-Si(001)-(2 x 1) surface and perpendicular to the same rows on H-Si(001)-(3 x 1). Using periodic density functional theory (DFT) calculations, we have studied the initial steps of the radical chain mechanism on the H-Si(001)-(3 x 1) surface and compared them to analogous results for H-Si(001)-(2 x 1). On the H-Si(001)-(3 x 1) surface, one of the crucial steps of the surface chain reaction, namely, the abstraction of a H atom from a nearby surface hydride unit, is found to have a somewhat smaller activation energy in the direction perpendicular to the dimer rows (H abstraction from the nearest dihydride site) than along the rows (H abstraction from a neighboring dimer). Additionally, due to the steric repulsion between the styrene molecules and the SiH2 subunits, growth along the dimer rows is not thermodynamically favorable on the (3 x 1) surface. On the other hand, due to the absence of the SiH2 subunits, growth parallel to the Si dimer rows becomes favored on the H-Si(001)-(2 x 1) surface.  相似文献   

19.
This paper presents a systematic molecular simulation study of the heterogeneous crystal growth of methane hydrate sII from supersaturated aqueous methane solutions. The growth of sII hydrate on the [001] crystallographic face is achieved through utilization of a recently proposed methodology, and rates of crystal growth of 1 A/ns were sustained for the molecular models and specific conditions employed in this work. Characteristics of the crystals grown as well as properties and structure of the interface are examined. Water cages with a 5(12)6(3) arrangement, which are improper to both sI and sII structures, are identified during the heterogeneous growth of sII methane hydrate. We show that the growth of a [001] face of sII hydrate can produce an sI crystalline structure, confirming that cross-nucleation of methane hydrate structures is possible. Defects consisting of two methane molecules trapped in large 5(12)6(4) cages and water molecules trapped in small and large cages are observed, where in one instance we have found a large 5(12)6(4) cage containing three water molecules.  相似文献   

20.
A semi-organic nonlinear optical single crystal of bis thiourea sodium iodide (BTSI) has been successfully grown from aqueous solution using the slow evaporation solvent technique (SEST) at room temperature. Obtained crystals using the SEST method were characterized by using different characterization techniques. Structural studies of the grown crystals have been carried out by single-crystal XRD to confirm the crystal system and functional groups by FT-IR spectroscopy. Single-crystal XRD reveals orthorhombic structure of semi-organic BTSI single crystals and its unit cell parameters. Metal complex coordination of the single crystal is studied by FT-IR spectroscopy. The optical absorption study revealed excellent optical transparency of BTSI crystal in the entire visible region with a sharp lower cutoff wavelength 298 nm. The energy band gap of BTSI is found to be 4.16 eV. Thermal stability and thermal decomposition of BTSI single crystals were investigated by TGA–DTA and DSC analysis. The surface appearance of BTSI crystals by scanning electron microscopy reveals the formation of layer growth pattern. The structural perfection and growth features of the grown crystal were analyzed by wet chemical etching studies. The above studies reveal the effect of incorporation of sodium iodide into the lattice of thiourea crystals. The as-grown BTSI single crystals can be used as a potential candidate for NLO material as well as in electronic and optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号