首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using near-field scanning microscopy/spectroscopy, we show that surface-enhanced Raman scattering (SERS) of rhodamine 6G deposited on self-affine silver colloidal film is localized to small, down to less than 200 nm, portions of the film. The locus of the SERS signals ("hot spots") does not necessarily reside in special topographic elements such as interstices and between nanoparticles. The local SERS enhancement is estimated to be over 3 orders of magnitude higher compared to the far-field measurements. Near-field imaging of SERS directly validates the theory of the optical response of self-affine fractal objects.  相似文献   

2.
We investigated the chemisorption of self-assembled monolayers of sulfur-functionalized 4-amino-7-nitrobenzofurazan on gold and silver nanoisland films (NIFs) by means of surface-enhanced fluorescence (SEF) and surface-enhanced Raman scattering (SERS). The ligand is a push–pull molecule, where an intramolecular charge transfer occurs between an electron-donor and an electron-acceptor group, thus exhibiting nonlinear optical properties that are related to both SERS and SEF effects. The presence of different heteroatoms in the molecule ensures the possibility of chemical interaction with both silver and gold substrates. The SERS spectra suggest that furazan is bound to silver via lone pairs of the nitrogen atoms, whereas the ligand is linked to gold via a sulfur atom. Silver NIFs provide more efficient enhancement of both fluorescence and Raman scattering in comparison with gold NIFs. The present SEF and SERS investigation could provide useful information for foreseeing changes in the nonlinear responses of this push–pull molecule.  相似文献   

3.
《Vibrational Spectroscopy》2000,22(1-2):39-48
Surface Enhanced Raman Spectroscopy (SERS) is a valuable analytical tool for the investigation of molecules adsorbed on roughened noble metal surfaces. The shape, size, and surrounding of the metal protrusions play an important role in the Raman scattering enhancement. By combining scanning near-field optical microscopy (SNOM) with Raman spectroscopy the spatial resolution suffices for investigating isolated silver islands on SERS active substrates. We demonstrate an optical resolution below 70 nm for recording spectra on specifically prepared and fully characterized SERS substrates. For a quantitative evaluation of the SERS signal the spatial distribution of Rhodamine 6G (R6G) deposited on the SERS substrate was determined by friction force measurements. By comparing the Raman intensities of the SERS substrates with those of unmetallized support plates absolute SERS enhancement factors at specific locations on top and in the vicinity of the silver islands were determined directly.  相似文献   

4.
5.
Calculations of the electric-field enhancements in the vicinity of an illuminated silver tip, modeled using a Drude dielectric response, have been performed using the finite difference time domain method. Tip-induced field enhancements, of application in "apertureless" Raman scanning near-field optical microscopy (SNOM), result from the resonant excitation of plasmons on the metal tip. The sharpness of the plasmon resonance spectrum and the highly localized nature of these modes impose conditions to better exploit tip plasmons in tip-enhanced apertureless SNOM. The effect of tip-to-substrate separation and polarization on the resolution and enhancement are analyzed, with emphasis on the different field components parallel and perpendicular to the substrate.  相似文献   

6.
光学显微镜在人们认识微观世界的过程中一直扮演着非常重要的角色.随着认识的深入,对空间分辨率的要求也越来越高.但是众所周知,普通光学显微镜(远场情况下)的分辨率受光的衍射效应所限制,一般可表达为0.61A/N.A.(约等于A/2,A为照射光的波长,N.A.为数值孔径)  相似文献   

7.
RNA bases have a great importance in the biological and genetics applications. The surface-enhanced Raman scattering (SERS) was used to study the orientation and adsorption structure of RNA bases adsorbed on the surface of silver nanowires (Ag NWs). The Ag NWs were prepared and its UV-vis spectra were recorded. The RNA bases oriented perpendicularly on the surface of Ag NWs, as the coverage area decreases. Consequently, the in-plane bands were enhanced according to the SERS selection rule. Many bands were red shifted due to the chemisorption of RNA bases on the Ag NWs surface. New bands corresponding to the base-surface bond were appeared in the SERS spectra.  相似文献   

8.
Helical silver nanorod arrays with different arm numbers are designed by oblique angle deposition and their surface-enhanced Raman scattering properties are characterized. Assuming that the hot spots are located at the bends between the arms, and considering the optical absorbance of different layers, the SERS behavior can be predicted qualitatively.  相似文献   

9.
The spectroscopic properties and surface-enhanced spectra of Langmuir-Blodgett (LB) films of methacrylic homopolymer (HPDR13) are presented. It is shown that LB film displays strong fluorescence attributed to the spatial restrictions imposed by its structure. The emission is observed in conjunction with photoisomerization, a process clearly demonstrated by the formation of surface-relief gratings in the LB film [C.R. Mendon?a et al., Macromolecules 32 (1999) 1493]. Surface-enhanced Raman scattering (SERS), Surface-enhanced resonance Raman scattering (SERRS) and surface-enhanced fluorescence (SEF) were observed for LB films of HPDR13 deposited onto silver island films. SERS measurements were also carried out on a sample fabricated with one monolayer LB film deposited onto silver islands followed by one overlayer of silver (LB sandwiched between two layers of silver islands). The polymer interacts very weakly with the metal surface (physisorption), and the enhancement effect is determined by the local electric field enhancement. The strong SERS and SERRS signals were suitable for micro-Raman imaging. Line, area mapping and global images of the LB monolayer on silver island are reported. The transfer ratio in the fabrication of the LB suggests a homogeneous coating of the silver islands, thereby the chemical images show the variation of the SERS intensity due to surface enhancement.  相似文献   

10.
Free fluorescence spectra in solution and surface-enhanced Raman scattering (SERS) and surface enhanced fluorescence (SEF) spectra of chlorin e6 and water-soluble covalent fullerene–chlorin dyads have been studied. It has been demonstrated that chlorin e6 and covalent fullerene–chlorin dyads have similar characteristic SERS spectra. The fullerene–chlorin dyads show a pronounced SEF signal, while native chlorin e6 has no fluorescence on surface, which is consistent with the theory predicting an inverse dependence of the SEF intensity on the free fluorescence quantum yield. The concentration dependence of the SEF intensity is linear for the dyads in the range 0.1–2.0 μmol/L. These effects allow one to determine, with high sensitivity, the content of fullerene–chlorin dyads with a low quantum yield of free fluorescence in solutions, which opens wide opportunities for study of biological properties of fullerene–chlorin dyads and their applications in medicine.  相似文献   

11.
Progress in near-field optical spectroscopy research on metal nanoparticles demands a better understanding of the role played by particle-particle interactions and a deeper insight of the influence of the incident field wavelength. This is particularly true for scanning near-field optical microscopy (SNOM), where the mechanism by which some components of the evanescent illuminating field are transformed into propagating field components that carry information about the sample is at the core of the image formation and where the role played by the interactions between sample and tip remains a still open problem. In this perspective, we investigate numerically the optical behavior of small aggregates of spherical nanoparticles, taking into account the electromagnetic coupling between all particles and the apertureless tip. The tip is modeled as a sphere made of different materials characterized by appropriate dielectric functions. We find that the tip material affects both qualitatively and quantitatively the SNOM images; more important, from the analysis of the calculated scattering cross section, the resonance plasmon location of the whole (aggregate + tip) system undergoes detectable changes, if the tip is constituted of the same material of the sample, as the tip is situated in different positions. This modification of the plasmon frequencies induces a nontrivial variation of the near-field intensity as a function of the tip position and the resulting SNOM image can be distorted with respect to the actual shape of the sample. No simple arguments can be used to relate the value of the local field on the tip surface to the scattering cross section value; depending on the tip material, the comparison between these two measurements can help to clarify the role of basic interactions in the scattering mechanism.  相似文献   

12.
Resonance Raman (RR) spectroscopy has several advantages over the normal Raman spectroscopy (RS) widely used for in situ characterization of solid catalysts and catalytic reactions. Compared with RS, RR can provide much higher sensitivity and selectivity in detecting catalytically-significant surface metal oxides. RR can potentially give useful information on the nature of excited states relevant to photocatalysis and on the anharmonic potential of the ground state. In this critical review a detailed discussion is presented on several types of RR experimental systems, three distinct sources of so-called Raman (fluorescence) background, detection limits for RR compared to other techniques (EXAFS, PM-IRAS, SFG), and three well-known methods to assign UV-vis absorption bands and a band-specific unified method that is derived mainly from RR results. In addition, the virtues and challenges of surface-enhanced Raman spectroscopy (SERS) are discussed for detecting molecular adsorbates at catalytically relevant interfaces. Tip-enhanced Raman spectroscopy (TERS), which is a combination of SERS and near-field scanning probe microscopy and has the capability of probing molecular adsorbates at specific catalytic sites with an enormous surface sensitivity and nanometre spatial resolution, is also reviewed (300 references).  相似文献   

13.
随着纳米科学的发展,人们再次关注到金属电极上的光电化学研究. 这主要得益于币族金属纳米结构具有强的表面等离激元共振(SPR)效应,它能有效地将光从远场光转化为近场光,汇聚光能到金属表面区域,可以在表面产生强的光电场效应,或产生较长寿命的热电子-空穴载流子效应,或是更长时间尺度的热效应. 因此,SPR效应不仅产生了表面增强拉曼散射(SERS)效应,用于表征吸附分子,而且可能诱发表面化学反应,为在电化学界面实现光与电协同调控化学反应提供新思路. 本文首先回顾了金属电极上光电流理论的发展,然后总结了本研究组近年来将量子化学计算用于光电化学反应和SERS光谱研究的工作,并以在银金纳米结构电极上水合质子还原和芳香胺氧化为例,比较了热电子和热空穴参与光电化学反应的特点,揭示了SPR参与光电化学反应的本质.  相似文献   

14.
The fluctuation of surface-enhanced Raman scattering (SERS) spectra has been an obstacle to the analysis of the adsorbate on the metal surface. In this paper, we aim at using the density functional theory (DFT) to study the fluctuant Raman spectra of the cytosine molecule which interacts with a coinage metal atom or cation via N1 and N3 sites. The results show that the adsorption site strongly influences the Raman spectral property of cytosine molecule, especially the relative intensity of some bands. In addition, the SERS spectra of cytosine which is adsorbed on the gold, silver, and copper electrodes are measured, and the possible orientation and adsorption site of the cytosine molecule adsorbed on metal electrodes surface are proposed with the help of DFT simulations.  相似文献   

15.
应用化学还原法合成了Aucore@Ptshell纳米粒子, 并用扫描电子显微镜(SEM)和能量色散光谱(EDS)对其进行了表征; 采用电化学原位表面增强拉曼散射(SERS)光谱技术研究了不同介质中甲醛在Aucore@Ptshell/Pt电极上的电催化氧化行为, 获得了不同介质中甲醛在Aucore@Ptshell/Pt电极上电催化氧化行为的原位SERS谱. 研究结果表明, 不论在酸性、中性还是碱性介质中, 甲醛均能在Aucore@Ptshell/Pt电极上自发氧化解离出强吸附中间体CO, 只是在碱性介质中桥式吸附CO的比例明显增大, 且桥式吸附比线形吸附CO更易被氧化, 使CO在碱性介质中基本氧化完毕的电位比在中性及酸性介质中提前了约950 mV. 分子水平的研究结果表明, CO和甲醛在碱性介质中比在中性和酸性介质中更易被氧化.  相似文献   

16.
Confocal Raman microscopic measurements were performed on silver electrodes covered with hydrogenated amorphous carbon (a-C:H). When short accumulation time was used, the subsequently measured surface-enhanced Raman scattering (SERS) spectra exhibited fluctuations. As previously reported for other systems, the intensity of fluctuations of SERS spectra significantly decreases if O2 was removed from the ambient medium. In this contribution we show that intensive SERS fluctuations can be also observed for a-C:H/Ag samples immersed in the deoxygenated electrolyte after applying a negative potential pulse to the silver electrode. It means that the O2-mediated Burstein mechanism of SERS fluctuations, which has been previously proposed to explain the SERS O2 effect, is not adequate for these results. We suggest that oxygen chemisorbed on the silver surface decreases the average strength of the interaction between a-C:H clusters and the metal surface (and hence the speed of movement of a-C:H clusters across the metal surface) and that the SERS O2 effect should be rather explained using the "classical" model of SERS fluctuations, in which fluctuations are interpreted as a result of the thermally activated diffusion of carbon segments in and out of the SERS "hot spots". A numerical algorithm for modeling of the fluctuations of SERS intensity has been proposed, and some example simulations of SERS fluctuations have been carried out. For the first time, strongly fluctuating bands due to the stretching vibrations of significantly weakened C-H bonds have been identified.  相似文献   

17.
A new route has been developed to design plasmonic pollen grain-like nanostructures (PGNSs) as surface-enhanced Raman scattering (SERS)-active substrate. The nanostructures consisting of silver (Ag) and gold (Au) nanoparticles along with zinc oxide (ZnO) nanoclusters as spacers were found highly SERS-active. The morphology of PGNSs and those obtained in the intermediate stage along with each elemental evolution has been investigated by a high-resolution field emission scanning electron microscopy. The optical band gaps and crystal structure have been identified by UV-vis absorption and X-ray powder diffraction (XRD) measurements, respectively. For PGNSs specimen, three distinct absorption bands related to constituent elements Ag, Au, and ZnO were observed, whereas XRD peaks confirmed the existence of Ag, Au, and ZnO within the composition of PGNSs. SERS-activity of PGNSs was confirmed using Rhodamine 6G (R6G) as Raman-active dyes. Air-cooled solid-state laser kits of 532 nm were used as excitation sources in SERS measurements. SERS enhancement factor was estimated for PGNSs specimen and was found as high as 3.5×106. Finite difference time domain analysis was carried out to correlate the electromagnetic (EM) near-field distributions with the experiment results achieved under this investigation. EM near-field distributions at different planes were extracted for s-, p- and 45° of incident polarizations. EM near-field distributions for such nanostructures as well as current density distributions under different circumstances were demonstrated and plausible scenarios were elucidated given SERS enhancements. Such generic fabrication route as well as correlated investigation is not only indispensable to realize the potential of SERS applications but also unveil the underneath plasmonic characteristics of complex SERS-active nanostructures.  相似文献   

18.
The authors preparedlarge area surface-enhanced Raman scattering(SERS) active substrates with tunable enhancement. First the large area gratings were fabricated by scanning a photoresist with two-beam laser interference and subsequently they were coated with silver nano islands via vacuum evaporation. SERS active metal island grating substrates with four different periods(300, 400, 515 and 600 nm) and Ag nano islands uniformly coated on an area of 2.5 cm×0.5 cm were obtained. The measured SERS spectra reveal the tuning effect of the period on the Raman signals period. The highest enhancement(ca. 105) for Rhodamine 6G(R6G) as probing molecule is associated with a period of 515 nm due to the perfect matching of surface plasmons and Raman excitation line. A good reproducibility of SERS signals with almost the same SERS intensity at different spots was observed on all the larger area Ag island grating substrates.  相似文献   

19.
Excitation profiles of SERS (surface-enhanced Raman scattering) and/or SERRS (surface-enhanced resonance Raman scattering) spectral bands of two forms of a Ag-bpy (bpy = 2,2'-bipyridine) surface complex and of [Ru(bpy)3]2+ on Ag nanoparticle (hydrosol) surfaces were determined from the spectra excited in the 458-600 nm region and are reported together with the FT-SERS spectra of the Ag-bpy surface complex and FT Raman spectra of [Ru(bpy)3] Cl2. Seven of the observed 11 fundamentals as well as their first overtones and combination bands are selectively enhanced in SERS of the Ag-bpy surface complex formed in the Ag colloid/HCl/bpy system. The profiles of these bands show a common maximum at approximately 540 nm. The selectively enhanced bands of the Ag-bpy surface complex have nearly the same wavenumbers as those enhanced in the SERRS and resonance Raman spectra of [Ru(bpy)3]2+ upon excitation close to the 453 nm maximum of its MLCT absorption band. Moreover, the intensity patterns of the bpy vibrations of the two species match both in resonance (541 nm excitation for Ag-bpy, 458 nm for [Ru(bpy)3]2+) and in off-resonance (458 and 1064 nm for Ag-bpy, 1064 nm for [Ru(bpy)3]2+). The distinct band shapes of the excitation profiles of the selectively enhanced vibrational modes of the Ag-bpy surface complex, as well as the observation of overtones and combination bands in the SERS spectra upon excitation into this "band", are interpreted in terms of a charge-transfer resonance contribution to the overall SERS enhancement. In view of the near-coincidence of the vibrational modes coupled to the resonant electronic transition of Ag-bpy with those coupled to the MLCT transition of [Ru(bpy)3]2+, the resonant electronic transition is tentatively assigned to a Ag metal to bpy (pi*) CT transition.  相似文献   

20.
We present a theoretical study of the electromagnetic contribution to surface-enhanced Raman scattering (SERS) from a Langmuir-Blodgett film close to a metal surface. This macroscopic dipolar model fully accounts for the Raman-shifted emission so that meaningful SERS (electromagnetic) enhancement factors that do not depend only on the local electromagnetic field enhancement at the pump frequency are defined. For a plane metal surface, analytical SERS enhancement factors that are consistent for all pump beam polarization and molecular orientation are obtained. In order to investigate SERS on complex nanostructured metal surfaces, we introduce this model into the formally exact, Green's theorem surface integral equation formulation of the scattered electromagnetic field. This formulation is thus employed to calculate numerically the near-field and far-field emissions at the Raman-shifted frequency for very rough, random nanostructured surfaces, with emphasis on the impact of collective processes for varying pump frequency and Raman shift. Our results reveal that the widely used |E|4 approximation tends to overestimate average SERS enhancement factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号