首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of experimental methods, photoelectron-imaging spectroscopy, flowing afterglow-photoelectron spectroscopy and the flowing afterglow-selected ion flow tube technique, and electronic structure calculations at the B3LYP/6-311++G(d,p) level of density functional theory (DFT) have been employed to study the mechanism of the reaction of the hydroxide ion (HO-) with 1H-1,2,3-triazole. Four different product ion species have been identified experimentally, and the DFT calculations suggest that deprotonation by HO- at all sites of the triazole takes place to yield these products. Deprotonation of 1H-1,2,3-triazole at the N1-H site gives the major product ion, the 1,2,3-triazolide ion. The 335 nm photoelectron-imaging spectrum of the ion has been measured. The electron affinity (EA) of the 1,2,3-triazolyl radical has been determined to be 3.447 +/- 0.004 eV. This EA and the gas-phase acidity of 2H-1,2,3-triazole are combined in a negative ion thermochemical cycle to determine the N-H bond dissociation energy of 2H-1,2,3-triazole to be 112.2 +/- 0.6 kcal mol-1. The 363.8 nm photoelectron spectroscopic measurements have identified the other three product ions. Deprotonation of 1H-1,2,3-triazole at the C5 position initiates fragmentation of the ring structure to yield a minor product, the ketenimine anion. Another minor product, the iminodiazomethyl anion, is generated by deprotonation of 1H-1,2,3-triazole at the C4 position, followed by N1-N2 bond fission. Formation of the other minor product, the 2H-1,2,3-triazol-4-ide ion, can be rationalized by initial deprotonation of 1H-1,2,3-triazole at the N1-H site and subsequent proton exchanges within the ion-molecule complex. The EA of the 2H-1,2,3-triazol-4-yl radical is 1.865 +/- 0.004 eV.  相似文献   

2.
The 351.1 nm photoelectron spectrum of the vinyldiazomethyl anion has been measured. The ion is generated through the reaction of the allyl anion with N(2)O in helium buffer gas in a flowing afterglow source. The spectrum exhibits the vibronic structure of the vinyldiazomethyl radical in its electronic ground state as well as in the first excited state. Electronic structure calculations have been performed for these molecules at the B3LYP/6-311++G(d,p) level of theory. A Franck-Condon simulation of the X (2)A' state portion of the spectrum has been carried out using the geometries and normal modes of the anion and radical obtained from these calculations. The simulation unambiguously shows that the ions predominantly have an E conformation. The electron affinity (EA) of the radical has been determined to be 1.864 +/- 0.007 eV. Vibrational frequencies of 185 +/- 10 and 415 +/- 20 cm(-1) observed in the spectrum have been identified as in-plane CCN bending and CCC bending modes, respectively, for the X (2)A' state. The spectrum for the A (2)A' state is broad and structureless, reflecting large geometry differences between the anion and the radical, particularly in the CCN angle, as well as vibronic coupling with the X (2)A' state. The DFT calculations have also been used to better understand the mechanism of the allyl anion reaction with N(2)O. Collision-induced dissociation of the structural isomer of the vinyldiazomethyl anion, the 1-pyrazolide ion, has been examined, and energetics of the structural isomers is discussed.  相似文献   

3.
The 351.1 nm photoelectron spectrum of 1-pyrazolide anion has been measured. The 1-pyrazolide ion is produced by hydroxide (HO(-)) deprotonation of pyrazole in a flowing afterglow ion source. The electron affinity (EA) of the 1-pyrazolyl radical has been determined to be 2.938 +/- 0.005 eV. The angular dependence of the photoelectrons indicates near-degeneracy of low-lying states of 1-pyrazolyl. The vibronic feature of the spectrum suggests significant nonadiabatic effects in these electronic states. The gas phase acidity of pyrazole has been determined using a flowing afterglow-selected ion flow tube; Delta(acid)G(298) = 346.4 +/- 0.3 kcal mol(-1) and Delta(acid)H(298) = 353.6 +/- 0.4 kcal mol(-1). The N-H bond dissociation energy (BDE) of pyrazole is derived to be D(0)(pyrazole, N-H) = 106.4 +/- 0.4 kcal mol(-1) from the EA and the acidity using a thermochemical cycle. In addition to 1-pyrazolide, the photoelectron spectrum demonstrates that HO(-) deprotonates pyrazole at the C5 position to generate a minor amount of 5-pyrazolide anion. The photoelectron spectrum of 5-pyrazolide has been successfully reproduced by a Franck-Condon (FC) simulation based on the optimized geometries and the normal modes obtained from B3LYP/6-311++G(d,p) electronic structure calculations. The EA of the 5-pyrazolyl radical is 2.104 +/- 0.005 eV. The spectrum exhibits an extensive vibrational progression for an in-plane CCN bending mode, which indicates a substantial difference in the CCN angle between the electronic ground states of 5-pyrazolide and 5-pyrazolyl. Fundamental vibrational frequencies of 890 +/- 15, 1110 +/- 35, and 1345 +/- 30 cm(-1) have been assigned for the in-plane CCN bending mode and two in-plane bond-stretching modes, respectively, of X (2)A' 5-pyrazolyl. The physical properties of the pyrazole system are compared to the isoelectronic systems, pyrrole and imidazole.  相似文献   

4.
The structure and stability of various HCN2+ isomeric structures have been investigated at the complete active space SCF (CASSCF) and multireference-configuration interaction [MR-Cl-SD(Q)] levels of theory with the 6-31G(d) and 6-311G(d,p) basis sets. The investigated species include the singlet (S) and triplet (T) open-chain H-N-C-N+ ions 1S, 1S', and 1T, the open-chain H-C-N-N+ ions 2S, 2S', and 2T, the HC-N2+ cyclic structures 3S and 3T, and the HN-CN+ cyclic structures 4S and 4T. All these species have been identified as true energy minima on the CASSCF(8,7)/6-31G(d) potential energy surface, and their optimised geometries, refined at the CASSCF(8,8)/6-31G(d) level of theory, have been used to perform single point calculations at the [MR-Cl-SD(Q]/6-311G(d,p) computational level. The most stable structure was the H-N-C-N+ ion 1T, whose absolute enthalpy of formation at 298.15 K has been estimated as 333.9 +/- 2 kcalmol(-1) using the Gaussian-3 (G3) procedure. The two species closest in energy to 1T are the triplet H-C-N-N+ ion 2T and the singlet diazirinyl cation 3S, whose G3 enthalpies of formation at 298.15 K are 343.5 +/- 2 and 340.6 +/- 2 kcalmol(-1), respectively. Finally, we have discussed the implications of our calculations for the detailed structure of the HCN2+ ions formed in the reaction between N3+ and HCN, experimentally observed by flowing after-glow-selected ion flow/drift tube mass spectrometry and possibly occurring in Titan's atmosphere.  相似文献   

5.
Ab initio UMP2, RMP2, DFT/UB3LYP, and CBS-QB3 calculations have shown that the adiabatic potential energy surface (PES) of the 1,2,3-trifluorobenzene radical anion is a pseudorotation surface formed by nonplanar stationary structures. The low (approximately 2-4 kcal/mol) energy barriers in the path of pseudorotation imply manifestations of spectral exchange in the ESR spectra of this radical anion. The optically detected ESR of radical ion pairs was used to obtain the ESR spectrum of 1,2,3-trifluorobenzene radical anion in liquid squalane solution and to study temperature variations in the spectrum over the range of 243-325 K. The spectrum is a doublet of triplets with hfc constants of a(F(2)) = 29 mT and a(2F(1,3)) = 7.6 mT at T = 243 K. The experimental hfc constants are temperature-dependent. Calculations of the temperature dependence of hfc constants in the framework of the model of classical nuclei motion along the pseudorotation coordinate reproduce well the experimental data.  相似文献   

6.
We report simulated photoelectron spectra for 1,2,3-triazolide (CH)(2)N(3)(-), which reveal the vibronic energy levels of the neutral radical 1,2,3-triazolyl, (CH)(2)N(3). The spectral simulation using a quasidiabatic Hamiltonian H(d) comprised of polynomials through 4th order (thereby extending conventional quadratic expansions), is compared to both the experimental spectrum and a standard Franck-Condon (adiabatic) simulation. The quartic H(d) is far superior to the quadratic H(d), reproducing the main features of the experimental spectrum and allowing for their subsequent assignment. The contributions from excited anion states successfully reproduce the observed vibronic transitions to the red of the assigned band origin of the neutral species. The algorithmic extensions required for the determination of these hot band contributions to the total spectrum are discussed. Convergence of the spectral envelope with respect to the vibronic basis, including both the principal and hot bands, required more than 10(9) terms.  相似文献   

7.
Density functional theory B3LYP method with 6-31++G** basis was used to optimize the geometries of the ground states for 1,2,3-triazine-(H2O)n (n=1,2,3) complexes. All calculations indicate that the 1,2,3-triazine-water complexes in the ground states have strong hydrogen-bonding interaction, and the complex having a N…H-O hydrogen bond and a chain of water molecules which is terminated by a O…H-C hydrogen bond is the most stable. The H-O stretching modes of complexes are red-shifted relative to that of the monomer. In addition, the Natural bond orbit (NBO) analysis indicates that the intermolecular charge transfer between 1,2,3-triazine and water is 0.0222e, 0.0261e and 0.0273e for the most stable 1:1, 1:2 and 1:3 complexes, respectively. The first singlet (n, π*) vertical excitation energy of the monomer 1,2,3-triazine and the hydrogen-bonding complexes of 1,2,3-triazine-(H2O)n were investigated by time-dependent density functional theory.  相似文献   

8.
The 351.1 nm photoelectron spectrum of imidazolide anion has been measured. The electron affinity (EA) of the imidazolyl radical is determined to be 2.613 +/- 0.006 eV. Vibrational frequencies of 955 +/- 15 and 1365 +/- 20 cm(-1) are observed in the spectrum of the (2)B1 ground state of the imidazolyl radical. The main features in the spectrum are well-reproduced by Franck-Condon simulation based on the optimized geometries and the normal modes obtained at the B3LYP/6-311++G(d,p) level of density functional theory. The two vibrational frequencies are assigned to totally symmetric modes with C-C and N-C stretching motions. Overtone peaks of an in-plane nontotally symmetric mode are observed in the spectrum and attributed to Fermi resonance. Also observed is the photoelectron spectrum of the anion formed by deprotonation of imidazole at the C5 position. The EA of the corresponding radical, 5-imidazolyl, is 1.992 +/- 0.010 eV. The gas phase acidity of imidazole has been determined using a flowing afterglow-selected ion tube; delta(acid)G298 = 342.6 +/- 0.4 and delta(acid)H298 = 349.7 +/- 0.5 kcal mol(-1). From the EA of imidazolyl radical and gas phase acidity of imidazole, the bond dissociation energy for the N-H bond in imidazole is determined to be 95.1 +/- 0.5 kcal mol(-1). These thermodynamic parameters for imidazole and imidazolyl radical are compared with those for pyrrole and pyrrolyl radical, and the effects of the additional N atom in the five-membered ring are discussed.  相似文献   

9.
Alkylation of the zwitterionic heterocycle 8-chloro-bis[1,2,3]dithiazolo[4,5-b:5',4'-e]pyridine (ClBP) with alkyl triflates affords 8-chloro-4-alkyl-4H-bis[1,2,3]dithiazolo[4,5-b:5',4'-e]pyridin-2-ium triflates [ClBPR][OTf] (R = Me, Et, Pr). Reduction of these salts with decamethylferrocene affords the corresponding ClBPR radicals as thermally stable crystalline solids. The radicals have been characterized in solution by cyclic voltammetry and EPR spectroscopy. Measured electrochemical cell potentials and computed (B3LYP/6-31G) gas-phase disproportionation enthalpies are consistent with a low on-site Coulombic barrier U to charge transfer in the solid state. The crystal structures of ClBPR (R = Me, Et, Pr) have been determined by X-ray crystallography (at 293 K). All three structures consist of slipped pi-stacks of undimerized radicals, with many close intermolecular S.S contacts. ClBPMe undergoes a phase transition at 93 K to a slightly modified slipped pi-stack arrangement, the structure of which has also been established crystallographically (at 25 K). Variable-temperature magnetic and conductivity measurements have been performed, and the results interpreted in light of extended Hückel band calculations. The room-temperature conductivities of ClBPR systems (sigma(RT) approximately 10(-)(5) to 10(-)(6) S cm(-)(1)), as well as the weak 1D ferromagnetism exhibited by ClBPMe, are interpreted in terms of weak intermolecular overlap along the pi-stacks. The latter is caused by slippage of the molecular plates, a feature necessitated by the steric size of the R and Cl groups on the pyridine ring.  相似文献   

10.
1,2,3-Benzodithiazolyl, 2,1,3-benzothiaselenazolyl and 1,2,3-benzodiselenazolyl radicals were generated by the reduction of the corresponding cations and investigated by pulse EPR and ENDOR in frozen CHCl(3) solutions at 30 and 80 K. These methods, in combination with density functional theory calculations, were used to study the magnetic parameters of the radicals, namely the principal values of the nitrogen and proton hyperfine interactions and g-tensors. The spin density distribution was shown to be nearly the same for all investigated radicals and, therefore, replacement of sulfur by selenium leads to a limited perturbation of the radicals' electronic structure. A high anisotropy of the g-tensors was found for the selenium-containing radicals.  相似文献   

11.
Accurate geometries, relative energies, rotational and quartic centrifugal distortion constants, dipole moments, harmonic vibrational frequencies, and infrared intensities were determined from ab initio electronic structure calculations for eighteen conformers of the neutral form of the amino acid L-proline. Only four conformers have notable population at low and moderate temperature. The second most stable conformer is only 2+/-2 kJ mol(-1) above the global minimum, while the third and fourth conformers are nearly degenerate and have an excess energy of 7+/-2 kJ mol(-1) relative to the global minimum. All four conformers have one hydrogen bond: N.HO in the lower energy pair of conformers, and NH.O in the higher energy pair of conformers. The conformer pairs differ only in their ring puckering. The relative energies of the conformers include corrections for valence electron correlation, extrapolated to the complete basis set limit, as well as core correlation and relativistic effects. Structural features of the pyrrolidine ring of proline are discussed by using the concept of pseudorotation. The accurate rotational and quartic centrifugal distortion constants as well as the vibrational frequencies and infrared intensities should aid identification and characterization of the conformers of L-proline by rotational and vibrational spectroscopy, respectively. Bonding features of L-proline, especially intramolecular hydrogen bonds, were investigated by the atoms-in-molecules (AIM) technique.  相似文献   

12.
The 1-alkoxy-1,2,3-benzotriazole system has been synthesized and defined on the basis of its physical and spectral properties. Bond orders and charge densities of the parent compound in the series 1-methoxy-1,2,3-benzotriazole have been calculated. All-valence-electron calculations with configuration interaction give a reasonable account of the observed absorption spectrum.  相似文献   

13.
Y. Tanaka  S.I. Miller 《Tetrahedron》1973,29(21):3285-3296
4,5-Dicarbomethoxy-1,2,3-triazolide or 4-phenyl-1,2,3-triazolide displace chloride from ethyl chloroacetate or β-chloropropionate to give both 1-N and 2-N alkylated products. Our highest 2-N to 1-N selectivity was ca 5/1 and was found with the base triethylamine in DMF. The same triazolides and others add to alkynes, e.g. ethyl propiolate, methyl acetylenedicarboxylate, phenylpropiolaldehyde, ethyl phenylpropiolate, etc, to give Michael adducts at the 2-N position exclusively. Here the usual preference holds, i.e., the anti adduct is favored, but anti to syn isomerization usually sets in. On the basis of the available data for nucleophilic substitutions and additions, a limited directioselectivity pattern emerges for H-1,2,3-triazoles (T) and their anions (T?): neutral T almost invariably leads with 1-N; Tt-- usually adds to unsaturates at 2-N; unsubstituted, 4-substituted and 4,5-disubstituted T? attack organic halides at both 1-N and 2-N. Compared to phenyl, 2-triazolyl exerts a greater deshielding effect on proton chemical shifts; these and other patterns in the PMR spectra of the Michael adducts are discussed. CNDO calculations indicate that the 1-H is more stable than the 2-H-1,2,3-triazole and that in both neutral triazole and in triazolide, the 1-nitrogen position should lead nucleophilic attacks-this directioselectivity prediction is only partly (and probably fortuitously) correct.  相似文献   

14.
The infrared (3,200-30 cm(-1) spectra of gaseous and solid 1-bromosilacyclobutane, c-C3H6SiBrH, have been recorded. Additionally, the Raman spectra of the liquid (3,200- 30 cm(-1) with quantitative depolarization values and the solid have been recorded. Both the equatorial and the axial conformers have been identified in the fluid phases, Variable temperature ( - 105 to - 150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data the enthalpy difference has been determined to be 182 +/- 18 cm(-1) (2.18 +/- 0.22 kJ/mol) with the equatorial conformer the more stable rotamer and only conformer remaining in the annealing solid. At ambient temperature there is approximately 22% of the axial conformer present in the vapor phase. A complete vibrational assignment is proposed for both conformers based on infrared contours, relative intensities, depolarization values and group frequencies. The vibrational assignments are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. From the frequencies of the Si-H stretch, the Si-H bond distance of 1.483 A has been determined for both the equatorial and the axial conformers. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G(d) and 6-311 +/- G(d,p) basis sets at levels of Hartree Fock (RHF) and/or Moller- Plesset with full electron correlation by the perturbation method to the second order (MP2). The results are discussed and compared to those obtained for some similar molecules.  相似文献   

15.
The infrared spectra (3200-400 cm(-1)) of krypton solutions of 1,3-difluoropropane, FCH2CH2CH2F, at variable temperatures (-105 to -150 degrees C) have been recorded. Additionally, the infrared spectra (3200-50 cm(-1)) of the gas and solid have been recorded as well as the Raman spectrum of the liquid. From a comparison of the spectra of the fluid phases with that in the solid, all of the fundamental vibrations of the C2 conformer (gauche-gauche) where the first gauche indicates the form for one of the CH2F groups and the second gauche the other CH2F, and many of those for the C1 form (trans-gauche) have been identified. Tentative assignments have been made for a few of the fundamentals of the other two conformers, i.e. C2v (trans-trans) and Cs (gauche-gauche'). By utilizing six pairs of fundamentals for these two conformers in the krypton solutions, an enthalpy difference of 277 +/- 28 cm(-1) (3.31 +/- 0.33 kJ mol(-1)) has been obtained for the C2 versus C1 conformer with the C2 conformer the more stable form. For the C2v conformer, the enthalpy difference has been determined to be 716 +/- 72 cm(-1) (8.57 +/- 0.86 kJ mol(-1)) and for the Cs form 971 +/- 115 cm(-1) (11.6 +/- 1.4 kJ mol(-1)). It is estimated that there is 64 +/- 3% of the C2 form, 34 +/-3% of the C1 form, 1% of the C2v form and 0.6% of the Cs conformer present at ambient temperature. Equilibrium geometries and total energies of the four stable conformers have been determined from ab initio calculations with full electron correlation by the perturbation method to second order as well as by hybrid density functional theory calculations with the B3LYP method using a number of basis sets. The MP2 calculations predict the C1 conformer stability to be slightly higher than the experimentally determined value whereas for the C2v and Cs conformers the predicted energy difference is much larger than the experimental value. The B3LYP calculations predict a better energy difference for both the C1 and C2v as well as for the Cs conformers than the MP2 values. A complete vibrational assignment is proposed for the C2 conformer and many of the fundamentals have been identified for the C1 form based on the force constants, relative intensities and rotational-vibrational band contours obtained from the predicted equilibrium geometry parameters. By combining previously reported rotational constants for the C2 and C1 conformers with ab initio MP2/6-311 + G(d, p) predicted parameters, adjusted r0 parameters have been obtained for both conformers. Comparisons are made with the parameters obtained for some other molecules containing the FCH2 group. The spectroscopic and theoretical results are compared to the corresponding properties for some similar molecules.  相似文献   

16.
Quantum chemical calculations of the structures and cation-anion interaction of 1-ethyl-3-methylimidazolium lactate ([Emim][LAC]) ion pair at the B3LYP/6-31++G** theoretical level were performed. The relevant geometrical characteristics, energy properties, intermolecular H-bonds (H-bonds), and calculated IR vibrations with respect to isolated ions were systematically discussed. The natural bond orbital (NBO) and atoms in molecule (AIM) analyses were also employed to understand the nature of the interactions between cation and anion. The five most stable geometries were verified by analyzing the relative energies and interaction energies. It was found that the most of the C-H···O intermolecular H-bonds interactions in five stable conformers have some covalent character in nature. The elongation and red shift in IR spectrum of C-H bonds which involve in H-bonds is proved by electron transfers from the lone pairs of the carbonyl O atom of [LAC] to the C-H antibonding orbital of the [Emim]+. The interaction modes are more favorable when the carbonyl O atoms of [LAC] interact with the C2-H of the imidazolium ring and the C-H of the ethyl group through the formation of triple H-bonds.  相似文献   

17.
Infrared spectra (3500-50 cm(-1)) of gaseous and solid, and Raman spectrum (3500-30 cm(-1)) of liquid vinyldifluorosilane, CH(2)z.dbnd6;CHSiF(2)H, are reported. Both the cis and gauche rotamers have been identified in the fluid phases. From temperature-dependent FT-infrared spectra of krypton solutions, it is shown that the cis conformer is more stable than the gauche form by 119+/-12 cm(-1) (1.42+/-0.14 kJ mol(-1)). At ambient temperature there is 53+/-2% of the gauche conformer present. Complete vibrational assignments are provided for the cis conformer and several modes are identified for the gauche form. Harmonic force constants, fundamental frequencies, infrared intensities, and Raman activities have been obtained from MP2/6-31G(d) calculations with full electron correlation. The optimized geometries and conformational stabilities have also been obtained from ab initio MP2/6-31G(d), MP2/6-311+G(d,p), and MP2/6-311+G(2d,2p) calculations with full electron correlation as well as from density functional theory calculations (DFT) by the B3LYP method. The SiH bond distances (r(0)) of 1.472 and 1.471 A have been obtained for the cis and gauche conformers, respectively, from the silicon-hydrogen stretching frequencies. These results are compared to the corresponding quantities of the corresponding carbon analogue as well as with some similar molecules.  相似文献   

18.
The first reported synthesis of 1- and 2-cycloalkyl-1,2,3-benzotriazoles is reported. Physical and spectral data of the system are reported. Molecular orbital calculations on the 1,2,3-benzotriazole anion show that N1 is a more nucleophilic site than N2.  相似文献   

19.
By monitoring the decay of SO4*- after flash photolysis of aqueous solutions of S2O82- at different pH values, the kinetics of the reaction of SO4*- radicals with gallic acid and the gallate ion was investigated. The bimolecular rate constants for the reactions of the sulfate radicals with gallic acid and the gallate ion were found to be (6.3 +/- 0.7) x 10(8) and (2.9 +/- 0.2) x 10(9) M(-1) s(-1), respectively. On the basis of the oxygen-independent second-order decay kinetics and on their absorption spectra, the organic radicals formed as intermediates of these reactions were assigned to the corresponding phenoxyl radicals. DFT calculations in the gas phase and aqueous solution support formation of the phenoxyl radicals by H abstraction from the phenols to the sulfate radical anion. The observed recombination of the phenoxyl radicals of gallic acid to yield substituted biphenyls and quinones is also supported by the calculations. HPLC/MS product analysis showed formation of one of the predicted quinones.  相似文献   

20.
Tetra-nitrogen (N(4)), which has been the subject of recent controversy [Cacace, d. Petris, and Troiani, Science 295, 480 (2002); Cacace, Chem. Eur. J. 8, 3839 (2002); Nguyen et al., J. Phys. Chem. A 107, 5452 (2003); Nguyen, Coord. Chem. Rev. 244, 93 (2003)] as well as of great theoretical interest, has been prepared from the N(4) (+) cation and then detected as a reionized gaseous metastable molecule with a lifetime exceeding 0.8 micros in experiments based on neutralization-reionization mass spectrometry. Moreover, we have used the nature of the charge-transfer reaction which occurs between a beam of fast N(4) (+) ions (8 keV translational energy) and various stationary gas targets to identify the vertical neutralization energy of the N(4) (+) ion. The measured value, 10.3+/-0.5, most closely matches that of the lowest energy azidonitrene (4)N(4) (+)C(s)((4)A(')) ion, resulting in the formation of the neutral bound azidonitrene (3)N(4)C(s)((3)A(")). Neutralization of the global minimum (2)N(4) (+)D( infinity h)((2)Sigma(u) (+)) ion leads to a structure 166 kJ mol(-1) above the dissociation products [N(2)((1)Sigma(g) (+))+N(2)((1)Sigma(g) (+))]; moreover, it was not possible to find a minimum on the (1)N(4) neutral potential energy surface for a covalently bonded structure. Ab initio calculations at the G3, QCISD/6-31G(d), and MP2/AUG-cc-pVTZ levels of theory have been used to determine geometries and both vertical neutralization energies of ions (doublet and quartet) and ionization energies of neutrals (singlet and triplet). In addition, we have also described in detail the EI ion source for the Ottawa VG ZAB mass spectrometer [Holmes and Mayer, J. Phys. Chem. A 99, 1366 (1995)] which was modified for high-pressure use, i.e., for the production of dimer and higher number cluster ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号