首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palladium-catalyzed Mizoroki-Heck reactions were carried out in water using thermoresponsive polymer micelles. The micelles were generated from thermoresponsive block copolymers consisting of a poly(N-isopropylacrylamide) (PNIPAAm) segment and a hydrophilic segment such as nonionic poly(ethylene glycol) (PEG) (2) and anionic poly(sodium p-styrenesulfonate) (PSSNa) (9). These copolymers exhibited lower critical solution temperature (LCST) behavior at ca. 40–50?°C and showed thermal stimuli-induced formation and dissociation of micelles. The copolymers formed micelles in aqueous solution at higher temperature, where catalytic reactions proceeded. At lower temperature, the micelles dissociated to form a clear solution, enabling efficient extraction of the products from aqueous reaction mixture. In the presence of these copolymers, palladium complexes catalyzed the coupling reactions between aryl iodides and alkene compounds inside the hydrophobic micelle cores in water under relatively milder conditions. Extraction of the products from the aqueous solution of 2 or 9 was found to be efficient enough in comparison with conventional surfactants.  相似文献   

2.
Thermo-responsive polymeric micelles of poly (ethylene glycol)-b-poly(2-hydroxyethyl methacrylate-g-lactide)-b-poly(N-isopropylacrylamide) (PEG-P(HEMA-PLA)-PNIPAM) with core–shell–corona structure were fabricated for applications in controlled drug release. The graft copolymer of PEG-P(HEMA-PLA)-PNIPAM was self-assembled into core–shell micelles with a densely PLA core and mixed PEG/PNIPAM shells at 25 °C in aqueous media. By increasing the temperature above the lower critical solution temperature of PNIPAM, these core–shell micelles could be converted into core–shell–corona micelles because of the collapse of PNIPAM block on the PLA core as the inner shell and the soluble PEG block stretching outside as the outer corona. Anticancer drug doxorubicin (DOX) was loaded in the polymeric micelles as a model drug. Compared with polymeric micelles formed by liner PEG-b-PLA-b-PNIPAM triblock copolymer, these polymeric micelles exhibited higher loading capacity, and release of DOX from the polymeric micelles with core–shell–corona structure was well-controlled.  相似文献   

3.
Two thermo‐ and pH‐sensitive polypeptide‐based copolymers, poly(N‐isopropylacrylamide‐coN‐hydroxymethylacrylamide)‐b‐poly(L ‐lysine) (P(NIPAAm‐co‐HMAAm)‐b‐PLL, P1 ) and poly(N‐isopropylacrylamide‐coN‐hydroxymethylacrylamide)‐b‐poly(glutamic acid) (P(NIPAAm‐co‐HMAAm)‐b‐PGA, P2 ), have been designed and synthesized by the ring‐opening anionic polymerization of N‐carboxyanhydrides (NCA) with amino‐terminated P(NIPAAm‐co‐HMAAm). It was found that the block copolymers exhibit good biocompatibility and low toxicity. As a result of electrostatic interactions between the positively charged PLL and negatively charged PGA, P1 and P2 formed polyion complex (PIC) micelles consisting of polyelectrolyte complex cores and P(NIPAAm‐co‐HMAAm) shells in aqueous solution. The thermo‐ and pH‐sensitivity of the PIC micelles were studied by UV/Vis spectrophotometry, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Moreover, fluorescent PIC micelles were achieved by introducing two fluorescent molecules with different colors. Photographs and confocal laser scanning microscopy (CLSM) showed that the fluorescence‐labeled PIC micelles exhibit thermo‐ and pH‐dependent fluorescence, which may find wide applications in bioimaging in complicated microenvironments.  相似文献   

4.
Well-defined linear dihydrophilic amphiphilic ABA-type triblock copolymers of ε-caprolactone (CL) and N-isopropylacrylamide (NIPAAm) have successfully been synthesized with a high yield by combining the ring opening polymerization (ROP) and xanthate-mediated reversible addition-fragmentation chain transfer (RAFT) polymerization methods. The resulted block copolymer shows the formation of micelles in water as supported by light scattering. The critical micelle concentration (cmc) value of the micelle increases with the increase in the chain length of the poly (N-isopropylacrylamide) (PNIPAAm) block. Cloud point of the block copolymers decreases with the decrease in the PNIPAAm chain length. The TGA analysis shows a one-step degradation and a lower thermal stability of the triblock copolymer than the PNIPAAm. The DSC analysis of the triblock copolymer shows the lowering of glass transition temperature (T g), and melting temperature (T m) peaks possibly due to the partial miscibility of the poly (ε-caprolactone) (PCL) block with the amorphous PNIPAAm block through the interaction of ester groups of PCL with the amide groups of PNIPAAm. The XRD pattern of the triblock copolymer shows a broad peak due to the suppression of the crystallization of PCL block owing to the mixing of PNIPAAm block with the PCL block.  相似文献   

5.
It is shown that linear-dendritic block copolymers poly(N-isopropylacrylamide)–block–polyphenylenegermane can be prepared by the polymerization of N-isopropylacrylamide in the presence of bis(pentafluorophenyl)germane followed by activated polycondensation with tris(pentafluorophenyl)germane. The properties of the dilute solutions and Langmuir monolayers of the functional polymers and the linear-dendritic block copolymers of N-isopropylacrylamide are studied.  相似文献   

6.
Core–shell micelles with biodegradability, thermo- and pH-response were successfully demonstrated by poly(2-oxepane-1,5-dione-co-ɛ-caprolactone) (P(OPD-co-CL)) grafted with hydrophilic segments of amine-terminated poly(N-isopropylacrylamide) (At-PNIPAM). To compare with the graft copolymer, P(OPD-co-CL) block PNIPAM polymer was also prepared. The micelles with core–shell structure were formed with both graft and block copolymers by self-assembly in aqueous solutions, of which PNIPAM shell is thermo-response. Furthermore, P(OPD-co-CL)-g-PNIPAM also showed pH-sensitivity, which was attributed to the acid-cleavable property of the hydrazone bond. The low critical micelle concentrations (CMCs) of graft polymers and block polymers were 6.7 mg/L and 14.3 mg/L, respectively, which indicated the formation of stable micelles. Both drug-free and drug-loaded micelles were in uniformly spherical shape observed by transmission electron microscopy (TEM). The sizes of the drug-free and drug-loaded micelles prepared from graft polymer were 123.5 nm and 146.5 nm, respectively, and the sizes of those prepared from block polymer were 197.5 nm and 211.5 nm, respectively. The lower critical solution temperature (LCST) for the graft polymer was 34.3 °C, while that for the block polymer was 28.1 °C, demonstrating a thermo-response. The graft polymeric micelles exhibited thermo-triggered decelerated release at pH 7.4, and pH-triggered accelerated release at 25 °C in vitro release test, indicating that the graft polymeric micelles could be a promising site-specific drug delivery system for enhancing the bioavailability of the drug in targeted pathological areas.  相似文献   

7.
In this paper, we report the synthesis and characterization of a new stimuli-responsive diblock polymer, i.e., methoxy poly (ethylene glycol)-block-Poly(N-isopropylacrylamide) (mPEG-b-PNIPAM), which belongs to the family of supramolecular amphiphiles. For this purpose, β-cyclodextrin (β-CD)-functionalized methoxy poly (ethylene glycol) (mPEG-CD) and adamantine (AD)-modified poly(N-isopropylacrylamide) (PNIPAM-AD) were synthesized. The diblock polymer mPEG-b-PNIPAM was then obtained by host–guest inclusion between mPEG-CD and PNIPAM-AD. The structure and molecular weight of the mPEG-b-PNIPAM was confirmed by 1HNMR and GPC, respectively. Above the lower critical solution temperature (LCST), mPEG-b-PNIPAM can self-assemble into nano-structures in aqueous solutions with PNIPAM block as the core and mPEG block as the corona. The aggregation behavior of mPEG-b-PNIPAM were revealed by UV-vis, DLS measurements, and TEM observations. The mPEG-b-PNIPAM was further utilized to construct Dox@mPEG-b-PNIPAM micelles at 37°C in phosphate-buffered saline (PBS). No detectable amount of Dox was released from the micelles at 37°C. When cooling to 27°C or adding a competitive reagent, however, release of Dox from the micelles was observed.  相似文献   

8.
Block copolymers comprising thermosensitive poly(N-isopropylacrylamide) (PNIPAM) and hydrophobic poly(n-butyl acrylate) (PBA) blocks, were synthesized using the reversible addition-fragmentation chain transfer polymerization (RAFT), their thermosensitive behavior was studied by ultraviolet spectrophotometer (UV) and dynamic light scattering (DLS). The lower critical solution temperature (LCST) was strongly correlated to the hydrophobic/hydrophilic ratio of the copolymers. Their micellization and self-assembly behavior in dilute aqueous solution were studied by surface tension (SFT), DLS and TEM. The resulting block copolymers reversibly formed or deformed micellar assemblies during their LCSTs. The critical micelle concentration (CMC) was controlled by the composition of PBA and PNIPAM, indicating the successful formation of the block copolymers.  相似文献   

9.
Water-soluble, amphiphilic diblock copolymers were synthesized by reversible addition fragmentation chain transfer polymerization. They consist of poly(butyl acrylate) as hydrophobic block with a low glass transition temperature and three different nonionic water-soluble blocks, namely, the classical hydrophilic block poly(dimethylacrylamide), the strongly hydrophilic poly(acryloyloxyethyl methylsulfoxide), and the thermally sensitive poly(N-acryloylpyrrolidine). Aqueous micellar solutions of the block copolymers were prepared and characterized by static and dynamic light scattering analysis (DLS and SLS). No critical micelle concentration could be detected. The micellization was thermodynamically favored, although kinetically slow, exhibiting a marked dependence on the preparation conditions. The polymers formed micelles with a hydrodynamic diameter from 20 to 100 nm, which were stable upon dilution. The micellar size was correlated with the composition of the block copolymers and their overall molar mass. The micelles formed with the two most hydrophilic blocks were particularly stable upon temperature cycles, whereas the thermally sensitive poly(N-acryloylpyrrolidine) block showed a temperature-induced precipitation. According to combined SLS and DLS analysis, the micelles exhibited an elongated shape such as rods or worms. It should be noted that the block copolymers with the most hydrophilic poly(sulfoxide) block formed inverse micelles in certain organic solvents.  相似文献   

10.
The synthesis of diblock copolymers of poly(N-isopropylacrylamide) (PNIPAM) and poly(vinyl acetate) (PVAc) was performed by macromolecular design via interchange of xanthates (MADIX) process. Following the preparation of methyl (isopropoxycarbonothioyl) sulfanyl acetate (MIPCTSA) as chain transfer agent, it was reacted with vinyl acetate to obtain PVAc macro-chain transfer agent. Then, block copolymerization was completed by successive addition of N-isopropylacrylamide (NIPAM). 1H NMR spectroscopy confirmed the presence of both blocks in the copolymer structure, with the expected composition based on the feed ratio. Size Exclusion Chromatography (SEC) was used to investigate the relative values of molecular characteristics. Only 20% of PVAc was converted to block copolymer. The resultant block copolymer structures were further examined in terms of their morphologies as well as critical micelle concentration (CMC) by using ESEM and Fluorescence Excitation Spectroscopic techniques, respectively. Morphological characterization confirmed amphiphilic block copolymer formation with the existence of mainly ca. 100 nm well distributed micelles. The thermo responsive amphiphilic behavior of the block copolymer solutions were followed by Dynamic Light Scattering (DLS) technique.  相似文献   

11.
The formation of spherical micelles in aqueous solutions of poly(N-methyl-2-vinyl pyridinium iodide)-block-poly(ethylene oxide), P2MVP-b-PEO and poly(acrylic acid)-block-poly(vinyl alcohol), PAA-b-PVOH has been investigated with light scattering-titrations, dynamic and static light scattering, and 1H 2D Nuclear Overhauser Effect Spectroscopy. Complex coacervate core micelles, also called PIC micelles, block ionomer complexes, and interpolyelectrolyte complexes, are formed in thermodynamic equilibrium under charge neutral conditions (pH 8, 1 mM NaNO3, = 25 °C) through electrostatic interaction between the core-forming P2MVP and PAA blocks. 2D 1H NOESY NMR experiments show no cross-correlations between PEO and PVOH blocks, indicating their segregation in the micellar corona. Self-consistent field calculations support the conclusion that these C3Ms are likely to resemble a ‘patched micelle’; that is, micelles featuring a ‘spheres-on-sphere’ morphology.  相似文献   

12.
Block and graft copolymers with poly(N-isopropylacrylamide) and poly[(N-acetylimino)ethylene] (PNAI) sequences were synthesized via PNAI derivatives (macroinitiators or macromers). The polymerization yields for block copolymers synthesized in ethanol, using the PNAI macroinitiator, were low (<10%), except where photochemical polymerization was applied. By contrast, for the copolymerizations of N-isopropylacrylamide with the PNAI macromers, performed in alcoholic solution, quite high polymerization yields, around 80-90%, were reached. 1H-NMR and IR spectral and differential scanning calorimeter thermal data confirmed the copolymer formation. Thermosensitivity of the copolymers was investigated by means of turbidimetric technique as a function of their nature, average molecular weight and composition. It was found that the length of the chain of the PNAI macromer and the content in hydrophilic PNAI units of the resulted copolymer affected this behavior.  相似文献   

13.
Thermosensitive amphiphilic poly(N-acroyloxysuccinimide)-b-poly(N-isopropylacrylamide)-b-poly(??-caprolactone) triblock copolymer was synthesized via the combination of reversible addition fragmentation chain transfer and ring-opening polymerization techniques. Shell cross-linked micelle (SCL) was further developed by the addition of cystamine as a di-functional cross-linker into the micellar solution. The persistence of regularly spherical shape against media change demonstrated locked micellar structure resulting from sufficient shell cross-linking. The lower critical solution temperature of the resulting SCL micelles was around 38?°C. The in vitro drug release study was carried out to illustrate the temperature-responsive drug release behaviors. To enhance the internalization to tumor cells, transferring (Tf) was further conjugated to the SCL micelles, and endocytosis experiments further confirmed the efficient uptake of Tf-SCL micelles by tumor cells, indicating that the Tf-SCL micelles would be a promising candidate for tumor-targeted drug delivery.  相似文献   

14.
Brush-like block copolymers with poly(t-butyl methacrylate) (PBMA) and poly(N-isopropylacrylamide) (PNIPAAm) as side arms, PBMA-b-PNIPAAm, were designed and synthesized via a simple free radical polymerization route. The chemical structure and molecular weight of these polymer brushes were characterized and determined by nuclear magnetic resonance (1H NMR), Fourier transform infrared spectrometry (FTIR) and gel permeation chromatography (GPC). The micellar formation by these polymer brushes in aqueous solutions were detected by a surface tension technique, and the critical micelle concentration (CMC) ranged from 1.53 to 8.06 mg L−1. The morphology and geometry of polymer micelles were investigated by transmission electron microscope (TEM) and dynamic light scattering (DLS). The polymer micelles assume the regularly-spherical core-shell structure with well-dispersed individual nanoparticles, and the particle size was in the range from 36 to 93 nm. The PNIPAAm segments exhibited a thermoreversible phase transition, so the resulting block polymer brushes were temperature-sensitive and the low critical solution temperature (LCST) was determined by UV-vis spectrometer at about 28.82–29.40°C. The characteristic parameters of the polymer micelles such as CMC, micellar size and LCST values were affected by their compositional ratios and the length of hydrophilic or hydrophobic chains. The evaluation for caffeine drug release behavior of the block polymer micelles demonstrated that the self-assembled micelles exhibited thermal-triggered properties in controlled drug release.  相似文献   

15.
The star-shaped organic/inorganic hybrid poly(l-lactide) (PLLA) based on polyhedral oligomeric silsesquioxane (POSS) was prepared using octa(3-hydroxypropyl) polyhedral oligomeric silsesquioxane as initiator via ring-opening polymerization (ROP) of l-lactide (LLA). The molecular weight of POSS-containing star-shaped hybrid PLLA (POSSPLLA) can be well controlled by the feed ratio of LLA to initiator. The POSSPLLA was further functionalized into the macromolecular reversible addition-fragmentation transfer (RAFT) agent for the polymerization of N-isopropylacrylamide (NIPAM), leading to the POSS-containing star-shaped organic/inorganic hybrid amphiphilic block copolymers, poly(l-lactide)–block–poly(N-isopropylacrylamide) (POSS(PLLA–b–PNIPAM)). The self-assembly behavior of POSS(PLLA–b–PNIPAM) block copolymers in aqueous solution was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). DLS showed the PNIPAM block in the aggregates is temperature-responsive and its phase-transition is reversible. TEM proved that the star-shaped POSS(PLLA–b–PNIPAM) amphiphilic block copolymers can self-assemble into the vesicles in aqueous solution. The vesicular wall and coronas are composed of the hydrophobic POSS core and PLLA, and hydrophilic PNIPAM blocks, respectively. Therefore, POSSPLLA and POSS(PLLA–b–PNIPAM) block copolymers, as a class of novel organic–inorganic hybrid materials with the advantageous properties, can be potentially used in biological and medical fields.  相似文献   

16.
Several series of symmetrical triblock copolymers were synthesized by the reversible addition fragmentation chain transfer method. They consist of a long block of poly(N-isopropylacrylamide) as hydrophilic, thermoresponsive middle block, which is end-capped by two small strongly hydrophobic blocks made from five different vinyl polymers. The association of the amphiphilic polymers was studied in dilute and concentrated aqueous solution. The polymer micelles found at low concentrations form hydrogels at high concentrations, typically above 30–35 wt.%. Hydrogel formation and the thermosensitive rheological behavior were studied exemplarily for copolymers with hydrophobic blocks of polystyrene, poly(2-ethylhexyl acrylate), and poly(n-octadecyl acrylate). All systems exhibited a cloud point around 30 °C. Heating beyond the cloud point initially favors hydrogel formation but continued heating results in macroscopic phase separation. The rheological behavior suggests that the copolymers associate into flower-like micelles, with only a small share of polymers that bridge the micelles and act as physical cross-linkers, even at high concentrations.  相似文献   

17.
Two distinctive block copolymers protected gold nanoparticles (AuNPs) were prepared with poly(methylacrylic acid)-block-poly(N-isopropylacrylamide) (SH-PMAA64-b-PNIPAM35) and poly (N-isopropylacrylamide)-block-poly(methylacrylic acid) (SH-PNIPAM40-b- PMAA60) through strong gold-sulfur bonding. The hybrid NPs have a pH-responsive inner shell (or corona) and a thermo-responsive corona (or inner shell) due to different location relations of the PNIPAM and PMAA on the surface of AuNPs. Then, the aggregation behaviors, as well as the changes of optical properties, of two hybrid NPs were compared in response to both stimuli. The results showed the obvious inter-particle aggregation caused by the phase transition for hydrophobic coronal polymer. However, the particles of hydrophilic corona layer retained good dispersion and the pH-responsive or thermo-responsive characteristics of shell layer made relatively minor changes.  相似文献   

18.
The synthesis, characterization and self-assembly of a novel amphiphilic block copolymer containing a poly(N-vinylpyrrolidone) as a segment of hydrophilic and poly(4-vinyl benzene chloride) (PVBC) arms are reported. The copolymer was characterized by FT-IR spectroscopy 1H NMR. The composition and the molecular weights of the block copolymers were established using gel permeation chromatography and 1H NMR. The water-soluble fraction of poly(N-vinyl-2-pyrrolidone) (PVP)/PVBC block copolymers formed micelles which were investigated at 25 °C in water at 5 mg/ml concentration using a tensiometer. The morphology of micelles in aqueous solution was determined by the AFM, SANS, and SAXS methods.  相似文献   

19.
A new protocol for preparation of thermoresponsive poly(N-isopropylacrylamide, NIPAM) containing block copolymers is described. It involves two successive heterogeneous controlled/living nitroxide-mediated polymerizations (NMPs) in supercritical carbon dioxide (scCO2) using N-tert-butyl-N-[1-diethylphosphono-(2,2-dimethylpropyl)]nitroxide (SG1), as the nitroxide. Precipitation NMPs give narrow dispersity macroinitiators (MIs), and a first report of the controlled/living polymerization of N,N-dimethylacrylamide (DMA) in scCO2 is described. The MI is then used in an inverse suspension NMP of NIPAM in scCO2 resulting in the efficient preparation of block copolymers containing DMA, tert-butyl acrylate and styrene. Aqueous cloud point temperature analysis for poly(DMA)-b-poly(NIPAM) and poly(acrylic acid)-b-poly(NIPAM) shows a significant dependence on poly(NIPAM) chain length for a given AB block copolymer.  相似文献   

20.
The physicochemical properties of polyion complex (PIC) micelles were investigated in order to characterize the cores constituted of electrostatic complexes of two oppositely charged polyelectrolytes. The pH-sensitive micelles were obtained with double hydrophilic block copolymers containing a poly(acrylic acid) block linked to a modified poly(ethylene oxide) block and various polyamines (polylysine, linear and branched polyethyleneimine, polyvinylpyridine, and polyallylamine). The pH range of micellization in which both components are ionized was determined for each polyamine. The resulting PIC micelles were characterized using dynamic light scattering and small-angle X-ray scattering experiments (SAXS). The PIC micelles presented a core–corona nanostructure with variable polymer density contrasts between the core and the corona, as revealed by the analysis of the SAXS curves. It was shown that PIC micelle cores constituted by polyacrylate chains and polyamines were more or less dense depending on the nature of the polyamine. It was also determined that the density of the cores of the PIC micelles depended strongly on the nature of the polyamine. These homogeneous cores were surrounded by a large hairy corona of hydrated polyethylene oxide block chains. Auramine O (AO) was successfully entrapped in the PIC micelles, and its fluorescence properties were used to get more insight on the core properties. Fluorescence data confirmed that the cores of such micelles are quite compact and that their microviscosity depended on the nature of the polyamine. The results obtained on these core–shell micelles allow contemplating a wide range of applications in which the AO probe would be replaced by various cationic drugs or other similarly charged species to form drug nanocarriers or new functional nanodevices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号