首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The topopyrones represent a new class of highly cytotoxic topoisomerase I poisons. Efficient total syntheses of all four naturally occurring members of this class have been accomplished. Key elements of the syntheses include Diels-Alder reactions employing two novel dienes and a titanium-mediated ortho-directed Friedel-Crafts acylation. Additionally, the syntheses of two chlorinated analogues accessible from an advanced intermediate are described.  相似文献   

2.
On the basis of an analysis of luotonin A and its D-ring deaza analogue as topoisomerase I poisons and topoisomerase I-dependent cytotoxic agents, a novel analogue of the structurally related antitumor antibiotic camptothecin (CPT) was prepared. 14-Azacamptothecin was found to have much greater aqueous solubility than CPT, to inhibit topoisomerase I-mediated DNA relaxation more efficiently than CPT, and to stabilize the covalent binary complex to almost the same extent. 14-Aza CPT was found to be slightly less active than CPT in mediating cytotoxicity toward yeast expressing human topoisomerase I, possibly as a consequence of its greater off-rate from the CPT-topoisomerase I-DNA ternary complex.  相似文献   

3.
Tan JS  Ciufolini MA 《Organic letters》2006,8(21):4771-4774
[reaction: see text] We describe a straightforward synthesis of topopyrones B and D, which are potent and selective inhibitors of topoisomerase I. The chemistry should be suitable for additional structure-activity relationship (SAR) work.  相似文献   

4.
A series of 13 anthrapyrazole compounds that are analogues of piroxantrone and losoxantrone were synthesized, and their cell growth inhibitory effects, DNA binding, topoisomerase IIalpha mediated (EC 5.99.1.3) cleavage of DNA, and inhibition of DNA topoisomerase IIalpha decatenation catalytic activities were determined. Cell growth inhibitory activity was well-correlated with DNA binding, suggesting that these compounds may act by targeting DNA. However, cell growth inhibition was not well-correlated with the inhibition of topoisomerase IIalpha catalytic activity, suggesting that these anthrapyrazoles did not act solely by inhibiting the catalytic activity of topoisomerase II. Most of the analogues were able to induce DNA cleavage, and thus, it was concluded that they acted, at least in part, as topoisomerase II poisons. Structure-based three-dimensional quantitative structure-activity analyses (3D-QSAR) were carried out on the aligned structures of the anthrapyrazoles docked into DNA using comparative molecular field analysis (CoMFA) and comparative molecular similarity index (CoMSIA) analyses in order to determine the structural features responsible for their activity. Both CoMFA and CoMSIA yielded statistically significant models upon partial least-squares analyses. The 3D-QSAR analyses showed that hydrogen-bond donor interactions and electrostatic interactions with the protonated amino side chains of the anthrapyrazoles led to high cell growth inhibitory activity.  相似文献   

5.
A novel series of carbamate derivatives of 4-beta-amino-4'-O-demethyl-4-desoxypodophyllotoxin were synthesized. Their effect on human DNA topoisomerase II and antiproliferative activity was evaluated. Compounds 4a-c, 4g, 4j and 4k are topoisomerase II poisons that induce double-stranded breaks in DNA and exhibit increased cytotoxicity compared to etoposide.  相似文献   

6.
Cellular DNA topoisomerase I is an important target in cancer chemotherapy. A chloroform extract of the root barks of Cudrania tricuspidata showed an inhibitory effect on mammalian DNA topoisomerase I. The topoisomerase I inhibitory compound was purified and identified as 2',5,7-trihydroxy-4',5'-(2,2-dimethylchromeno)-8-(3-hydroxy-3-methylbutyl) flavanone. The compound, temporarily designated as PKH-3, was shown to inhibit the activity of topoisomerase I with IC50 about 1.0 mM. Concentration of 10 microM PKH-3 caused 50% growth inhibition of human cancer cell U937. PKH-3-induced cell death was characterized with the cleavage of poly(ADP-ribose) polymerase (PARP) and pro-caspase 3. Furthermore, PKH-3 induced the fragmentation of DNA into multiples of 180 b.p. (an apoptotic DNA ladder), indicating that the inhibitor triggered apoptosis. This induction of apoptosis by PKH-3 was also confirmed using flow cytometry analysis. Taken together, these results suggest that PKH-3 may function by inhibiting oncogenic disease, at least in part, through the inhibition of topoisomerase I activity.  相似文献   

7.
Luotonin A is a pyrroloquinazolinoquinoline alkaloid isolated from the Chinese herbal medicinal plant Peganum nigellastrum. Although previously shown to exhibit cytotoxicity against the murine leukemia P-388 cell line, the mechanism of action of luotonin A is unknown. Presently, we demonstrate that luotonin A stabilizes the human DNA topoisomerase I-DNA covalent binary complex, affording the same pattern of cleavage as the structurally related topoisomerase I inhibitor camptothecin. Luotonin A also mediated topoisomerase I-dependent cytotoxicity toward Saccharyomyces cerevisiae lacking yeast topoisomerase I, but harboring a plasmid having the human topoisomerase I gene under the control of a galactose promoter. This finding identifies a putative biochemical locus for the cytotoxic action of luotonin A and has important implications for the mechanism of action of camptothecin and the design of camptothecin analogues.  相似文献   

8.
Issar  Upasana  Arora  Richa  Kumari  Tripti  Kakkar  Rita 《Structural chemistry》2019,30(4):1185-1201
Structural Chemistry - Certain DNA minor groove binders, especially bis-benzimdazole containing compounds, such as Hoechst 33258 and its derivatives, act as potent topoisomerase I inhibitors. The...  相似文献   

9.
Summary Using the X-ray crystal structure of the human topoisomerase I (top1) – DNA cleavable complex and the Sybyl software package, we have developed a general model for the ternary cleavable complex formed with four protoberberine alkaloids differing in the substitution on the terminal phenyl rings and covering a broad range of the top1-poisoning activities. This model has the drug intercalated with its planar chromophore between the −1 and +1 base pairs flanking the cleavage site, with the nonplanar portion pointing into the minor groove. The ternary complexes were geometry-optimized and relative interaction energies, computed by using the Tripos force field, were found to rank in correct order the biological potency of the compounds; in addition, the model is also consistent with the top1-poisoning inactivity of berberine, a major prototype of the protoberberine alkaloids. The model might serve as a rational basis for elaboration of the most active compound as a lead structure, in order to develop more potent top1 poisons as next generation anti-cancer drugs.  相似文献   

10.
The pendant E-ring moiety of the podophyllotoxin aza-analogue 1 that is a potent inhibitor of microtubule assembly was modified in order to acquire inhibitory activity of DNA topoisomerase II. The monophenolic analogue 2 did not exhibit human topoisomerase II inhibition, while the ortho-quinone 3 that was obtained by oxidation of 2 inhibited its catalytic activity (decatenation) in a dose-dependent manner and stimulated double strand DNA breaks in supercoiled circular plasmid DNA, resulting in the production of linear DNA. These results showed that the topoisomerase II inhibition of the ortho-quinone 3 is due to stabilization of the topoisomerase II-DNA covalent binary complex. On the other hand, the ortho-quinone 3 did not inhibit the relaxation process of supercoiled DNA by topoisomerase I at concentrations up to 400 microM, nor was intercalation observed in unwinding measurements of 3. Therefore, the ortho-quinone 3 was shown to be a novel nonintercalative topoisomerase II specific inhibitor that stabilizes the cleavable complex. The present results suggest that the 4'-free hydroxyl group on the E-ring and the sugar moiety on the C-ring are not a prerequisite for topoisomerase II inhibition by podophyllotoxin derivatives.  相似文献   

11.

Background  

Mycobacterium tuberculosis DNA topoisomerase I is an attractive target for discovery of novel TB drugs that act by enhancing the accumulation of the topoisomerase-DNA cleavage product. It shares a common transesterification domain with other type IA DNA topoisomerases. There is, however, no homology between the C-terminal DNA binding domains of Escherichia coli and M. tuberculosis DNA topoisomerase I proteins.  相似文献   

12.

Background

Topoisomerase II poisons are in clinical use as anti-cancer therapy for decades and work by stabilizing the enzyme-induced DNA breaks. In contrast, catalytic inhibitors block the enzyme before DNA scission. Although several catalytic inhibitors of topoisomerase II have been described, preclinical concepts for exploiting their anti-proliferative activity based on molecular characteristics of the tumor cell have only recently started to emerge. Topoisomerase II is an ATPase and uses the energy derived from ATP hydrolysis to orchestrate the movement of the DNA double strands along the enzyme. Thus, interfering with ATPase function with low molecular weight inhibitors that target the nucleotide binding pocket should profoundly affect cells that are committed to undergo mitosis.

Results

Here we describe the discovery and characterization of a novel purine diamine analogue as a potent ATP-competitive catalytic inhibitor of topoisomerase II. Quinoline aminopurine compound 1 (QAP 1) inhibited topoisomerase II ATPase activity and decatenation reaction at sub-micromolar concentrations, targeted both topoisomerase II alpha and beta in cell free assays and, using a quantitative cell-based assay and a chromosome segregation assay, displayed catalytic enzyme inhibition in cells. In agreement with recent hypothesis, we show that BRCA1 mutant breast cancer cells have increased sensitivity to QAP 1.

Conclusion

The results obtained with QAP 1 demonstrate that potent and selective catalytic inhibition of human topoisomerase II function with an ATP-competitive inhibitor is feasible. Our data suggest that further drug discovery efforts on ATP-competitive catalytic inhibitors are warranted and that such drugs could potentially be developed as anti-cancer therapy for tumors that bear the appropriate combination of molecular alterations.  相似文献   

13.
The Mitsunobu reaction was used to attach tetra-O-benzyl-D-glucopyranose to a monoindolylmaleimide, providing a key intermediate in the total synthesis of indolocarbazole topoisomerase I poisons. Using normal-phase silica gel chromatography, purification of the glycosylated product normally required multiple columns, resulting in poor recovered yields. Reversed-phase chromatography was used successfully to purify this highly hydrophobic material, rapidly and in high yield.  相似文献   

14.
Topotecan (TPT) is in clinical use as an antitumor agent, hycamtin?. Because of this, it requires both biologically and chemically useful information to be available. TPT acts by binding to the covalent complex formed by nicked DNA and topoisomerase I. This has a poisonous effect since inserted into the single‐strand nick and TPT inhibits its religation. We used NMR to trace TPT dynamics, tautomerism and solvolysis products in various solvents and conditions. Chemical stability was assessed in methanol and DMSO as compared to water, and the regioselectivity of the N‐ and O‐methylation was studied using various alkylating agents. The reaction products of quaternization of the nitrogen atom and methylation of the oxygen atom were characterized by means of ESI MS, 1H/13C‐HMBC and ‐HSQCAD NMR. We have focused on the NMR characterization of TPT with an anticipation that its aggregation, tumbling properties and the intramolecular dipolar interactions will be a common feature for other compounds described in this article. These features can also be useful in tracing the interactions of this class of topoisomerase I (TopoI) poisons with DNA. Moreover, the results explained shed light on the recently disclosed problem of lack of stability of TPT in the heart tissue homogenate samples using the analytical assays developed for this class of compounds carried out in the presence of methanol. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract— The effects of selected DNA intercalating and non-intercalating drugs on the UV excision repair process in human fibroblasts have been examined. 9-Amino acridine, acridine orange, quinacrine, doxorubicin (adriamycin), ethidium bromide and actinomycin-D all inhibited the removal of pyrimidine dimers from cellular DNA by inhibiting the incision process as monitored by the nick translation assay and by an endonuclease-sensitive site assay. These agents also partially inhibited incision by the M. luteus endonuclease in an in vitro system. This is the only class of compounds tested to date that appears to block this early step of repair in mammalian cells. The DNA topoisomerase inhibitors, m -amsacrine and VP-16 (etoposide) and the bacterial gyrase inhibitors nalidixic acid and oxolinic acid were shown not to inhibit UV repair. As shown previously, however, novobiocin does block dimer removal and we show here that it is a potent inhibitor of the M. luteus UV endonuclease. While it has recently been demonstrated that many DNA intercalating agents block the strand-passing activity of DNA topoisomerase II giving rise to protein associated DNA strand breaks, the finding that the specific inhibitors of topoisomerase, m -AMSA and VP-16, do not inhibit repair, even though they block this strand passing activity, strongly suggests that inhibition of DNA topoisomerase is not associated with inhibition of DNA repair.  相似文献   

16.
A new polypyridyl ligand containing a nitro group and two new ruthenium complexes of it were synthesized. The two complexes exhibited non‐dppz DNA ‘light switch’ effects after interaction with calf thymus DNA. Introducing both electron‐withdrawing group (─ NO2) and electron‐donating group (─ CH3) may be the reason that the two complexes display DNA ‘light switch’ behaviors. Furthermore, one of the complexes showed higher photocleavage activity, topoisomerase I inhibition activity and DNA affinity than the other. The present work shows that the more active complex can be employed as a non‐dppz DNA ‘light switch’, DNA photocleaver and topoisomerase I inhibitor. In addition, the two complexes have no or weak cytotoxic activities against Eca‐109 and A549 cells.  相似文献   

17.
BACKGROUND: Human DNA topoisomerase I (top1) relaxes DNA supercoiling during basic nuclear processes. The enzyme is the main target of antitumor agents, such as camptothecins (CPT), that transform top1 into a DNA-damaging agent. RESULTS: By directed evolution of a C-terminal portion, we selected human top1 mutants that were 22-28-fold more CPT-sensitive than wild-type top1 in Saccharomyces cerevisiae cells. The evolved enzymes showed unique mutation patterns and were more processive in plasmid relaxation assays. A top1 mutant had only two amino acid changes in the linker domain, one of which may change a linker/core domain contact surface. The mutant stimulated DNA cleavage to higher levels than the wild-type enzyme and was more sensitive to CPT in a cleavage assay. Moreover, the mutant was more CPT-sensitive than wild-type top1 in a repair-deficient yeast strain. CONCLUSIONS: Mutations in the linker domain can affect DNA binding and CPT sensitivity of human top1. Such drug-hypersensitive topoisomerases may be useful in developing DNA cutters with high cell lethality and in new drug discovery programs.  相似文献   

18.
Gyrase is a bacterial type IIA topoisomerase that catalyzes negative supercoiling of DNA. The enzyme is essential in bacteria and is a validated drug target in the treatment of bacterial infections. Inhibition of gyrase activity is achieved by competitive inhibitors that interfere with ATP- or DNA-binding, or by gyrase poisons that stabilize cleavage complexes of gyrase covalently bound to the DNA, leading to double-strand breaks and cell death. Many of the current inhibitors suffer from severe side effects, while others rapidly lose their antibiotic activity due to resistance mutations, generating an unmet medical need for novel, improved gyrase inhibitors. DNA supercoiling by gyrase is associated with a series of nucleotide- and DNA-induced conformational changes, yet the full potential of interfering with these conformational changes as a strategy to identify novel, improved gyrase inhibitors has not been explored so far. This review highlights recent insights into the mechanism of DNA supercoiling by gyrase and illustrates the implications for the identification and development of conformation-sensitive and allosteric inhibitors.  相似文献   

19.
The mechanism of type IB topoisomerase-mediated DNA relaxation was studied by modification of vaccinia topoisomerase I at the active site tyrosine (position 274) with several tyrosine analogues. These analogues had varied steric, electronic, and stereochemical features to permit assessment of those structural elements required to support topoisomerase function. Eleven tyrosine analogues were successfully incorporated into the active site of vaccinia topoisomerase I. It was found that only tyrosine analogues having the phenolic -OH group in the normal position relative to the protein backbone were active. Modifications that replaced the nucleophilic tyrosine OH (pKa approximately 10.0) group with NH2 (pKa 4.6), SH (pKa approximately 7.0), or I groups or that changed the orientation of the nucleophilic OH group essentially eliminated topoisomerase I function. For the active analogues, the electronic effects and H-bonding characteristics of substituents in the meta-position of the aromatic ring may be important in modulating topoisomerase I function. The pH profile for the functional analogues revealed a small shift toward lower pH when compared with wild-type topoisomerase I.  相似文献   

20.
A549 human lung carcinoma cell lines were treated with a series of new drugs with both tacrine and coumarin pharmacophores (derivatives 1a–2c) in order to test the compounds’ ability to inhibit both cancer cell growth and topoisomerase I and II activity. The ability of human topoisomerase I (hTOPI) and II to relax supercoiled plasmid DNA in the presence of various concentrations of the tacrine-coumarin hybrid molecules was studied with agarose gel electrophoresis. The biological activities of the derivatives were studied using MTT assays, clonogenic assays, cell cycle analysis and quantification of cell number and viability. The content and localization of the derivatives in the cells were analysed using flow cytometry and confocal microscopy. All of the studied compounds were found to have inhibited topoisomerase I activity completely. The effect of the tacrine-coumarin hybrid compounds on cancer cells is likely to be dependent on the length of the chain between the tacrine and coumarin moieties (1c, 1d = tacrine-(CH2)8–9-coumarin). The most active of the tested compounds, derivatives 1c and 1d, both display longer chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号