首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
For 30 years after their invention half a century ago, cutting planes for integer programs have been an object of theoretical investigations that had no apparent practical use. When they finally proved their practical usefulness in the late eighties, that happened in the framework of branch and bound procedures, as an auxiliary tool meant to reduce the number of enumerated nodes. To this day, pure cutting plane methods alone have poor convergence properties and are typically not used in practice. Our reason for studying them is our belief that these negative properties can be understood and thus remedied only based on a thorough investigation of such procedures in their pure form. In this paper, the second in a sequence, we address some important issues arising when designing a computationally sound pure cutting plane method. We analyze the dual cutting plane procedure proposed by Gomory in 1958, which is the first (and most famous) convergent cutting plane method for integer linear programming. We focus on the enumerative nature of this method as evidenced by the relative computational success of its lexicographic version (as documented in our previous paper on the subject), and we propose new versions of Gomory’s cutting plane procedure with an improved performance. In particular, the new versions are based on enumerative schemes that treat the objective function implicitly, and redefine the lexicographic order on the fly to mimic a sound branching strategy. Preliminary computational results are reported.  相似文献   

2.
A cutting plane method, using the idea of Tuy cuts, has been suggested in earlier papers as a possible means of solving reverse convex programs. However, the method is fraught with theoretical and numerical difficulties. Stringent sufficient conditions for convergence inn dimensions are given. However, examples of nonconvergence are given and reasons for this nonconvergence are developed. A result of the discussion is a convergent algorithm which combines the idea of the cutting plane method with vertex enumeration procedures in order to numerically improve upon the edge search procedure of Hillestad.  相似文献   

3.
This paper presents the results of computational studies of the properties of cutting plane algorithms as applied to posynomial geometric programs. The four cutting planes studied represent the gradient method of Kelley and an extension to develop tangential cuts; the geometric inequality of Duffin and an extension to generate several cuts at each iteration. As a result of over 200 problem solutions, we will draw conclusions regarding the effectiveness of acceleration procedures, feasible and infeasible starting point, and the effect of the initial bounds on the variables. As a result of these experiments, certain cutting plane methods are seen to be attractive means of solving large scale geometric programs.This author's research was supported in part by the Center for the Study of Environmental Policy, The Pennsylvania State University.  相似文献   

4.
We give a method for strengthening cutting planes for pure and mixed integer programs. The method improves the coefficients of the integer-constrained variables, while leaving unchanged those of the continuous variables. We first state the general principle on which the method is based; then apply it to the class of cuts that can be obtained from disjunctive constraints. Finally, we give simple procedures for calculating the improved coefficients of cats in this class, and illustrate them on a numerical example.  相似文献   

5.
本文讨论了自动化车床连续加工零件工序定期检查和刀具更换的最优策略 .针对问题一 ,应用管理成本理论结合概率统计方法 ,建立定期检查调节零件的平均管理成本的优化设计模型 ,通过计算机求解、模拟 ,得到工序设计效益最好的检查间隔和刀具更换间隔 .针对问题二 ,在问题一的基础上 ,利用概率知识调整了检查间隔中的不合格品数带来的平均损失 ,同时加上了因工序正常而误认为有故障停机产生的平均损失 ,然后建立起目标函数 ,得到工序设计效益最好的检查间隔和刀具更换策略 .对于工序故障采用自动检查装置 ,设计出了自动检查调节系统 ,并给出了算法框图 ,有效地避免工序正常而误认为有故障停机损失 ,提高工序效益  相似文献   

6.
This paper uses the formulation of the quadratic assignment problem as that of minimizing a concave quadratic function over the assignment polytope. Cutting plane procedures are investigated for solving this problem. A lower bound derived on the number of cuts needed for termination indicates that conventional cutting plane procedures would require a huge computational effort for the exact solution of the quadratic assignment problems. However, several heuristics which are derived from the cutting planes produce optimal or good quality solutions early on in the search process. An illustrative example and computational results are presented.  相似文献   

7.
In this paper an integrated problem formulated as an integer linear programming problem is presented to find an optimal solution to the cutting stock problem under particular pattern sequencing constraints. The solution uses a Lagrangian approach. The dual problem is solved using a modified subgradient method. A heuristic for the integrated problem is also presented. The computational results obtained from a set of unidimensional instances that use these procedures are reported.  相似文献   

8.
The one-dimensional cutting stock problem is the problem of cutting stock material into shorter lengths, in order to meet demand for these shorter lengths while minimizing waste. In industrial cutting operations, it may also be necessary to fill the orders for these shorter lengths before a given due date. We propose new optimization models and solution procedures which solve the cutting stock problem when orders have due dates. We evaluate our approach using data from a large manufacturer of reinforcement steel and show that we are able to solve industrial-size problems, while also addressing common cutting considerations such as aggregation of orders, multiple stock lengths and cutting different types of material on the same machine. In addition, we evaluate operational performance in terms of resulting waste and tardiness of orders using our model in a rolling horizon framework.  相似文献   

9.
A finite algorithm is presented for solving the quasi-concave minimization problem subject to linear constraints. The concept of an extreme point is generalized to that of an extreme facet of a polyhedron. Then a search routine is developed for the detection of an extreme facet of the feasible region relative to the polyhedron defined by the current set of cuts. After identifying an extreme facet we cut it off by a cut developed for this purpose. We call this cut the facet cut. The method is both compatible with other cutting procedures and is finite..  相似文献   

10.
In this paper we study a two-dimensional non-guillotine cutting problem, the problem of cutting rectangular pieces from a large stock rectangle so as to maximize the total value of the pieces cut. The problem has many industrial applications whenever small pieces have to be cut from or packed into a large stock sheet. We propose a tabu search algorithm. Several moves based on reducing and inserting blocks of pieces have been defined. Intensification and diversification procedures, based on long-term memory, have been included. The computational results on large sets of test instances show that the algorithm is very efficient for a wide range of packing and cutting problems.  相似文献   

11.
This paper presents a greedy randomized adaptive search procedure (GRASP) for the constrained two-dimensional non-guillotine cutting problem, the problem of cutting the rectangular pieces from a large rectangle so as to maximize the value of the pieces cut. We investigate several strategies for the constructive and improvement phases and several choices for critical search parameters. We perform extensive computational experiments with well-known instances previously reported, first to select the best alternatives and then to compare the efficiency of our algorithm with other procedures.  相似文献   

12.
We apply a linearization technique for nonconvex quadratic problems with box constraints. We show that cutting plane algorithms can be designed to solve the equivalent problems which minimize a linear function over a convex region. We propose several classes of valid inequalities of the convex region which are closely related to the Boolean quadric polytope. We also describe heuristic procedures for generating cutting planes. Results of preliminary computational experiments show that our inequalities generate a polytope which is a fairly tight approximation of the convex region.  相似文献   

13.
We consider two variable target value frameworks for solving large-scale nondifferentiable optimization problems. We provide convergence analyses for various combinations of these variable target value frameworks with several direction-finding and step-length strategies including the pure subgradient method, the volume algorithm, the average direction strategy, and a generalized Polyak-Kelley cutting plane method. In addition, we suggest a further enhancement via a projected quadratic-fit line-search whenever any of these algorithmic procedures experiences an improvement in the objective value. Extensive computational results on different classes of problems reveal that these modifications and enhancements significantly improve the effectiveness of the algorithms to solve Lagrangian duals of linear programs, even yielding a favorable comparison against the commercial software CPLEX 8.1.  相似文献   

14.
The common feature of cutting stock problems is to cut some form of stock materials to produce smaller pieces of materials in quantities matching orders received. Most research on cutting stock problems focuses on either generating cutting patterns to minimize wastage or determining the required number of stock materials to meet orders. In this paper, we examine a variation of cutting stock problems that arises in some industries where meeting orders' due dates is more important than minimizing wastage of materials. We develop two two-dimensional cutting stock models with due date and release date constraints. Since adding due dates and release dates makes the traditional cutting stock problem even more difficult to solve, we develop both LP-based and non-LP-based heuristics to obtain good solutions. The computational results show that the solution procedures are easy to implement and work very well.  相似文献   

15.
This paper proposes a new and simplified method for the calibration of cutting force coefficients and cutter runout parameters for cylindrical end milling using the instantaneous cutting forces measured instead of average ones. The calibration procedure is derived for a mechanistic cutting force model in which the cutting force coefficients are expressed as the power functions of instantaneous uncut chip thickness (IUCT). The derivations are firstly performed by establishing mathematical relationships between instantaneous cutting forces and IUCT. Then, nonlinear algorithms are proposed to solve the established nonlinear contradiction equations. The typical features of this new calibration method lie in twofold. On the one hand, all derivations are directly based on the tangential, radial and axial cutting force components transformed from the forces which are measured in the workpiece Cartesian coordinate system. This transformation makes the calibration procedure very simple and efficient. On the other hand, only a single cutting test is needed to be performed for calibrating the cutting force coefficients that are valid over a wide range of cutting conditions. The effectiveness of the proposed method in developing cutting force model is demonstrated experimentally with a series of verification cutting tests.  相似文献   

16.
In this paper a two-dimensional trim-loss problem connected to the paper-converting industry is considered. The problem is to produce a set of product paper rolls from larger raw paper rolls such that the cost for waste and the cutting time is minimized. The problem is generally non-convex due to a bilinear objective function and some bilinear constraints, which give rise to difficulties in finding efficient numerical procedures for the solution. The problem can, however, be solved as a two-step procedure, where the latter step is a mixed integer linear programming (MILP) problem. In the present formulation, both the width and length of the raw paper rolls as well as the lengths of the product paper rolls are considered variables. All feasible cutting patterns are included in the problem and global optimal cutting patterns are obtained as the solution from the corresponding MILP problem. A numerical example is included to illustrate the proposed procedure.  相似文献   

17.
Gilmore and Gomory's algorithm is one of the better actually known exact algorithms for solving unconstrained guillotine two-dimensional cutting problems. Herz's algorithm is more effective, but only for the unweighted case. We propose a new exact algorithm adequate for both weighted and unweighted cases, which is more powerful than both algorithms. The algorithm uses dynamic programming procedures and one-dimensional knapsack problem to obtain efficient lower and upper bounds and important optimality criteria which permit a significant branching cut in a recursive tree-search procedure. Recursivity, computational power, adequateness to parallel implementations, and generalization for solving constrained two-dimensional cutting problems, are some important features of the new algorithm.  相似文献   

18.
 In an unpublished paper, Araque, Hall and Magnanti considered polyhedra associated with the Capacitated Vehicle Routing Problem (CVRP) in the special case of unit demands. Among the valid and facet-inducing inequalities presented in that paper were the so-called multistar and partial multistar inequalities, each of which came in several versions. Some related inequalities for the case of general demands have appeared subsequently and the result is a rather bewildering array of apparently different classes of inequalities. The main goal of the present paper is to present two relatively simple procedures that can be used to show the validity of all known (and some new) multistar and partial multistar inequalities, in both the unit and general demand cases. The procedures provide a unifying explanation of the inequalities and, perhaps more importantly, ideas that can be exploited in a cutting plane algorithm for the CVRP. Computational results show that the new inequalities can be useful as cutting planes for certain CVRP instances. Received: January 9, 1999 / Accepted: June 17, 2002 Published online: September 27, 2002 Key Words. vehicle routing – valid inequalities – cutting planes  相似文献   

19.
Cutting plane methods require the solution of a sequence of linear programs, where the solution to one provides a warm start to the next. A cutting plane algorithm for solving the linear ordering problem is described. This algorithm uses the primaldual interior point method to solve the linear programming relaxations. A point which is a good warm start for a simplex-based cutting plane algorithm is generally not a good starting point for an interior point method. Techniques used to improve the warm start include attempting to identify cutting planes early and storing an old feasible point, which is used to help recenter when cutting planes are added. Computational results are described for some real-world problems; the algorithm appears to be competitive with a simplex-based cutting plane algorithm.Research partially supported by ONR Grant number N00014-90-J-1714.  相似文献   

20.
This study intends to determine the optimal cutting parameters required to minimize the cutting time while maintaining an acceptable quality level. Usually, the equation for predicting cutting time is unknown during the early stages of cutting operations. This equation can be determined by studying the output cutting times vs. input cutting parameters through CATIA software, with assistance from the statistical method, response surface methodology (RSM). Then, the equation is formulated as an objective function in the form of mathematical programming (MP) to determine the optimal cutting parameters so that the cutting time is minimized. The formulation in MP also includes the constraints of feasible ranges for process capability consideration and surface roughness for quality concerns. The important ranking obtained from the statistical method in cooperation with the optimal solutions found from MP can also be used as references for the possibility of robust design improvements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号