首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The zwitterionic drug 3‐methyl‐9‐(2‐oxa‐2λ5‐2H‐1,3,2‐oxazaphosphorine‐2‐cyclohexyl)‐3,6,9‐triazaspiro[5,5]undecane chloride (SLXM‐2) is a novel synthetic compound which has shown anticancer activity and low toxicity in vivo. In this study, the various gas‐phase fragmentation routes were analyzed by electrospray ionization mass spectrometry (positive ion mode) in conjunction with tandem mass spectrometry (ESI‐MSn) for the first time. In ESI‐MS the fragment ion at m/z 289 (base peak) was formed by loss of the chlorine anion from the zwitterionic precursor SLXM‐2. The fragment ion at m/z 232 was formed from the ion at m/z 289 by loss of 1‐methylaziridine. The detailed gas‐phase collision‐induced dissociation (CID) fragmentation mechanisms obtained from the various precursor ions extracted from the zwitterionic SLXM‐2 drug was obtained by tandem mass spectrometry analyses. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Glu, Gln, Pro, and Ala are the main amino acids involved in ammonia detoxification in mosquitoes. In order to develop a tandem mass spectrometry method (MS2) to monitor each carbon of the above isotopically-labeled 13C-amino acids for metabolic studies, the compositions and origins of atoms in fragments of the protonated amino acid should be first elucidated. Thus, various electrospray (ESI)-based MS2 tools were employed to study the fragmentation of these unlabeled and isotopically-labeled amino acids and better understand their dissociation pathways. A broad range of fragments, including previously-undescribed low m/z fragments was revealed. The formulae of the fragments (from m/z 130 down to m/z 27) were confirmed by their accurate masses. The structures and conformations of the larger fragments of Glu were also explored by ion mobility mass spectrometry (IM-MS) and gas-phase hydrogen/deuterium exchange (HDX) experiments. It was found that some low m/z fragments (m/z 27–30) are common to Glu, Gln, Pro, and Ala. The origins of carbons in these small fragments are discussed and additional collision induced dissociation (CID) MS2 fragmentation pathways are proposed for them. It was also found that small fragments (≤m/z 84) of protonated, methylated Glu, and methylated Gln are the same as those of the underivatized Glu and Gln. Taken together, the new approach of utilizing low m/z fragments can be applied to distinguish, identify, and quantify 13C-amino acids labeled at various positions, either in the backbone or side chain.   相似文献   

3.
Isobaric product ions cannot be differentiated by exact mass determinations, although in some cases deuterium labeling can provide useful structural information for identifying isobaric ions. Proposed fragmentation pathways of fentanyl were investigated by electrospray ionization ion trap mass spectrometry coupled with deuterium labeling experiments and spectra of regiospecific deuterium labeled analogs. The major product ion of fentanyl under tandem mass spectrometry (MS/MS) conditions (m/z 188) was accounted for by a neutral loss of N‐phenylpropanamide. 1‐(2‐Phenylethyl)‐1,2,3,6‐tetrahydropyridine (1) was proposed as the structure of the product ion. However, further fragmentation (MS3) of the fentanyl m/z 188 ion gave product ions that were different from the product ion in the MS/MS fragmentation of synthesized 1, suggesting that the m/z 188 product ion from fentanyl includes an isobaric structure different from the structure of 1. MS/MS fragmentation of fentanyl in deuterium oxide moved one of the isobars to 1 Da higher mass, and left the other isobar unchanged in mass. Multistage mass spectral data from deuterium‐labeled proposed isobaric structures provided support for two fragmentation pathways. The results illustrate the utility of multistage mass spectrometry and deuterium labeling in structural assignment of isobaric product ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The identification of quantitative trait loci (QTL) for plant metabolites requires the quantitation of these metabolites across a large range of progeny. We developed a rapid metabolic profiling method using both untargeted and targeted direct infusion tandem mass spectrometry (DIMSMS) with a linear ion trap mass spectrometer yielding sufficient precision and accuracy for the quantification of a large number of metabolites in a high‐throughput environment. The untargeted DIMSMS method uses top‐down data‐dependent fragmentation yielding MS2 and MS3 spectra. We have developed software tools to assess the structural homogeneity of the MS2 and MS3 spectra hence their utility for phenotyping and genetical metabolomics. In addition we used a targeted DIMS(MS) method for rapid quantitation of specific compounds. This method was compared with targeted LC/MS/MS methods for these compounds. The DIMSMS methods showed sufficient precision and accuracy for QTL discovery. We phenotyped 200 individual Lolium perenne genotypes from a mapping population harvested in two consecutive years. Computational and statistical analyses identified 246 nominal m/z bins with sufficient precision and homogeneity for QTL discovery. Comparison of the data for specific metabolites obtained by DIMSMS with the results from targeted LC/MS/MS analysis showed that quantitation by this metabolic profiling method is reasonably accurate. Of the top 100 MS1 bins, 22 ions gave one or more reproducible QTL across the 2 years. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
We have identified compounds obtained from the SARA fractions of bitumen by using atmospheric pressure photoionization mass spectrometry and low‐energy collision tandem mass spectrometric analyses with a QqToF‐MS/MS hybrid instrument. The identified compounds were isolated from the maltene saturated oil and the aromatic fractions of the SARA components of a bitumen. The QqToF instrument had sufficient mass resolution to provide accurate molecular weight information and to enhance the tandem mass spectrometry results. The APPI‐QqToF‐MS analysis of the separated compounds showed a series of protonated molecules [M + H]+ and molecular ions [M]+? of the same mass but having different chemical structures, in the maltene saturated oil and the aromatic SARA fractions. These isobaric ions were a molecular ion [M2]+? at m/z 418.2787 and a protonated molecule [M5 + H]+ at m/z 287.1625 in the saturated oil fraction, and molecular ions [M6]+? at m/z 418.1584 and [M7]+? at m/z 287.1285 in the aromatic fraction. The identification of this series of chemical compounds was achieved by performing CID‐MS/MS analyses of the molecular ions [M]+? ([M1]+? at m/z 446. 2980, [M2]+? at m/z 418.2787, [M3]+? at m/z 360.3350 and [M4]+? at m/z 346.2095) in the saturated oil fraction and of the [M5 + H]+ ion at m/z 287.1625 also in the saturated oil fraction. The observed CID‐MS/MS fragmentation differences were explained by proposed different breakdown processes of the precursor ions. The presented tandem mass spectrometric study shows the capability of MS/MS experiments to differentiate between different classes of chemical compounds of the SARA components of bitumen and to explain the reasons for the observed mass spectrometric differences. However, greater mass resolution than that provided by the QqToF‐MS/MS instrument would be required for the analysis of the asphaltene fraction of bitumen. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
We developed a straightforward approach for high‐throughput top–down glycolipidomics based on fully automated chip‐nanoelectrospray (nanoESI) high‐capacity ion trap (HCT) multistage mass spectrometry (MSn) by collision‐induced dissociation (CID) in the negative ion mode. The method was optimized and tested on a polysialylated ganglioside fraction (GT1b), which was profiled by MS1 and sequenced in tandem MS up to MS6 in the same experiment. Screening of the fraction in the MS1 mode indicated the occurrence of six [M ? 2H]2? ions which, according to calculation, support 13 GT1 variants differing in their relative molecular mass due to dissimilar ceramide (Cer) constitutions. By stepwise CID MS2–MS5 on the doubly charged ion at m/z 1077.20 corresponding to a ubiquitous GT1b structure, the complete characterization of its oligosaccharide core including the identification of sialylation sites was achieved. Structure of the lipid moiety was further elucidated by CID MS6 analysis carried out using the Y0 fragment ion, detected in MS5, as a precursor. MS6 fragmentation resulted in a pattern supporting a single ceramide form having the less common (d20 : 1/18 : 0) configuration. The entire top–down experiment was performed in a high‐throughput regime in less than 3 min of measurement, with an analysis sensitivity situated in the subpicomolar range. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Sialylated O‐linked oligosaccharides are involved in many biological processes, such as cell‐cell interactions, cell‐substance adhesion, and virus‐host interactions. These activities depend on their structure, which is frequently determined by tandem mass spectrometry. However, these spectra are frequently analyzer‐dependent, which makes it difficult to develop widely applicable analytical methods. In order to deepen the origin of this behavior, two couples of isomers of sialylated O‐linked oligosaccharides, NeuAcα2‐3Galβ1‐3GalNAc‐ol/Galβ1‐3(NeuAcα2‐6)GalNAc‐ol and NeuGcα2‐3Galβ1‐3GalNAc‐ol/Galβ1‐3(NeuGcα2‐6)GalNAc‐ol, were analyzed by liquid chromatography/negative electrospray ionization ion trap tandem mass spectrometry (LC/ESI(?)‐MSn) using both an ion trap and a triple quadrupole mass spectrometer. Results clearly showed that while ions obtained in the triple quadrupole instrument fitted very well with the standard fragmentation routes, in the ion trap several intense ions could not be explained by these rules, specially a fragment at m/z 597. Furthermore, this ion was observed in the mass spectrum of those isomers that sialic acid binds to GalNAc by an α2‐6 linkage. From the MS3 spectrum of this ion an unexpected structure was deduced, and it led to propose alternative fragmentation pathways. Molecular mechanics calculations suggested that the found atypical route could be promoted by a hydrogen bond located only in α2‐6‐linked oligosaccharides. It has also been demonstrated that this process follows a slow kinetic, explaining why it cannot be observed using an ion beam‐type mass analyzer. In conclusion, ion traps seem to be more appropriate than triple quadrupoles to develop a reliable analytical method to distinguish between isomeric O‐linked glycans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
N-Mesyl-2-(1-methyl-1-butenyl)-6-methylaniline reacted with Br2 to afford N-mesyl-2-(3-bromo-1-penten-2-yl)aniline that under treatment with NH3 or amines underwent cyclization into N-mesyl-7-methyl-3-methylene-2-ethylindoline. The reaction of N-mesyl-2-(1-methyl-1-buten-1-yl)-4-methyl- and 2-(1-methyl-1-buten-1-yl)aniline with Br2 gave rise to the corresponding N-mesyl-2-(2-bromo-1-methyl-1-buten-1-yl)anilines. Under the similar conditions N-tosyl-2-(1-cyclohexen-1-yl)aniline was converted into N-tosyl-2-(6-bromo-1-cyclohexen-1-yl)aniline that under treatment with NH3 furnished N-tosyl-1,2,3,9a-tetrahydrocarbazole. The reaction of N-mesyl-1,2,3,9a-tetrahydrocarbazole with CuBr2 in MeOH afforded N-mesyl-4-methoxy-1,2,3,4-tetrahydrocarbazole. N-Mesyl-6-methyl-2-(1-cyclopenten-1-yl)aniline in reaction with Br2 in the presence of NaHCO3 was oxidized into the corresponding cyclopentenone, and with NBS it gave N-mesyl-2-(2-bromo-1-cyclopenten-1-yl)aniline.__________Translated from Zhurnal Organicheskoi Khimii, Vol. 41, No. 5, 2005, pp. 730–737.Original Russian Text Copyright © 2005 by Gataullin, Sotnikov, Spirikhin, Abdrakhmanov.  相似文献   

9.
10.
Biological and clinical samples for porphyrin and porphyrinogen analyses by liquid chromatography–tandem mass spectrometry (LC‐MS/MS) are often contaminated with poly(ethylene)glycol (PEG), which complicates the interpretation of mass spectra and characterisation of new porphyrin metabolites. Two contaminating PEG molecules (m/z 833 and m/z 835) were completely separated from uroporphyrin I (m/z 831) by travelling wave ion mobility spectrometry and characterised by tandem mass spectrometry. One of the PEG species (m/z 835) also co‐eluted with uroporphyrinogen I (m/z 837) and was unresolvable by travelling wave ion mobility spectrometry/MS, therefore contaminating the MS/MS mass spectra owing to isotope distribution. These PEG species, with the [M + H]+ ions at m/z at 833 and/or m/z 835, co‐eluted with uroporphyrin I and uroporphyrinogen I by LC‐MS/MS and could be wrongly identified as uroporphomethenes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In this work, the mass spectrometry behaviour of the veterinary drug family of phenicols, including chloramphenicol (CAP) and its related compounds thiamphenicol (TAP), florfenicol (FF) and FF amine (FFA), was studied. Several atmospheric pressure ionization sources, electrospray (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization were compared. In all atmospheric pressure ionization sources, CAP, TAP and FF were ionized in both positive and negative modes; while for the metabolite FFA, only positive ionization was possible. In general, in positive mode, [M + H]+ dominated the mass spectrum for FFA, while the other compounds, CAP, TAP and FF, with lower proton affinity showed intense adducts with species present in the mobile phase. In negative mode, ESI and atmospheric pressure photoionization showed the deprotonated molecule [M–H]?, while atmospheric pressure chemical ionization provided the radical molecular ion by electron capture. All these ions were characterized by tandem mass spectrometry using the combined information obtained by multistage mass spectrometry and high‐resolution mass spectrometry in a quadrupole‐Orbitrap instrument. In general, the fragmentation occurred via cyclization and losses or fragmentation of the N‐(alkyl)acetamide group, and common fragmentation pathways were established for this family of compounds. A new chemical structure for the product ion at m/z 257 for CAP, on the basis of the MS3 and MS4 spectra is proposed. Thermally assisted ESI and selected reaction monitoring are proposed for the determination of these compounds by ultra high‐performance liquid chromatography coupled to tandem mass spectrometry, achieving instrumental detection limits down to 0.1 pg. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Mass spectrometry (MS) is extensively used for the identification and sequencing of nucleic acids but has so far seen limited use for characterization of their higher order structures. Here, we have applied a range of different tandem mass spectrometry techniques, including electron detachment dissociation (EDD), infrared multiphoton dissociation (IRMPD), activated ion (AI) EDD, and EDD/IRMPD MS3, in a Fourier transform ion cyclotron resonance mass spectrometer to the characterization of three isomeric 15mer DNAs with different sequences and predicted solution-phase structures. Our goal was to explore whether their structural differences could be directly probed with these techniques. We found that all three 15mers had higher order structures in the gas phase, although preferred structures were predicted for only two of them in solution. Nevertheless, EDD, AI EDD, and EDD/IRMPD MS3 experiments yielded different cleavage patterns with less backbone fragmentation for the more stable solution-phase structure than for the other two 15mers. By contrast, no major differences were observed in IRMPD, although the extent of backbone cleavage was higher with that technique for all three 15mers. Thus, experiments utilizing the radical ion chemistry of EDD can provide complementary structural information compared to traditional slow heating methods, such as IRMPD, for structured nucleic acids.  相似文献   

13.
The importance of the mass spectral product ion structure is highlighted in quantitative assays, which typically use multiple reaction monitoring (MRM), and in the discovery of novel metabolites. Estradiol is an important sex steroid whose quantitation and metabolite identification using tandem mass spectrometry has been widely employed in numerous clinical studies. Negative electrospray ionization tandem mass spectrometry of estradiol (E2) results in several product ions, including the abundant m/z 183 and 169. Although m/z 183 is one of the most abundant product ions used in many quantitative assays, the structure of m/z 183 has not been rigorously examined. We suggest a structure for m/z 183 and a mechanism of formation consistent with collision induced dissociation (CID) of E2 and several stable isotopes ([D4]-E2, [13C6]-E2, and [D1]-E2). An additional product ion from E2, namely m/z 169, has also been examined. MS3 experiments indicated that both m/z 183 and m/z 169 originate from only E2 [M – H] m/z 271. These ions, m/z 183 and m/z 169, were also present in the collision induced decomposition mass spectra of other prominent estrogens, estrone (E1) and estriol (E3), indicating that these two product ions could be used to elucidate the estrogenic origin of novel metabolites. We propose two fragmentation schemes to explain the CID data and suggest a structure of m/z 183 and m/z 169 consistent with several isotopic variants and high resolution mass spectrometric measurements.   相似文献   

14.
We report here an automated method for the identification of N-oxide functional groups in drug metabolites by using the combination of liquid chromatography/tandem mass spectrometry (LC/MS n ) based on ion-molecule reactions and collision-activated dissociation (CAD). Data-dependent acquisition, which has been readily utilized for metabolite characterization using CAD-based methods, is adapted for use with ion-molecule reaction-based tandem mass spectrometry by careful choice of select experimental parameters. Two different experiments utilizing ion-molecule reactions are demonstrated, data-dependent neutral gain MS3 and data-dependent neutral gain pseudo-MS3, both of which generate functional group selective mass spectral data in a single experiment and facilitate increased throughput in structural elucidation of unknown mixture components. Initial results have been generated by using an LC/MS n method based on ion-molecule reactions developed earlier for the identification of the N-oxide functional group in pharmaceutical samples, a notoriously difficult functional group to identify via CAD alone. Since commercial software and straightforward, external instrument modification are used, these experiments are readily adaptable to the industrial pharmaceutical laboratory.  相似文献   

15.
The binary mixtures of 7 hexoses and 20 amino acids were investigated by electrospray ionization ion trap mass spectrometry (ESI‐ITMS). The adduct ions of the amino acid and the hexose were detected for 12 amino acids but not for the other 8 amino acids which are basic acidic amino acids and amides. The ions of amino acid–hexose complexes were further investigated by tandem mass spectrometry (MS/MS), and some of them just split easily into two parts whereas the others gave rich fragmentation, such as the complex ions of isoleucine, phenylalanie, tyrosine, and valine. We found that hexoses could be complexed by two molecules of valine but only by one molecule of the other amino acids. Among seven kinds of valine–hexose complexes coordinated by potassium ion, the MS2 spectra of the ion at m/z 453 yielded unambiguous differentiation. And the fragmentation ions are sensitive to the stereochemical differences at the carbon‐4 of hexoses in the complexes, as proved by the MS2. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Autoxidation of flavan‐3‐ols was carried out in aqueous/methanol model solutions under mildly acidic conditions (pH 6.0), and these autoxidation products were analyzed by using high performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (MS/MS). The results showed that (+)‐catechins and (?)‐epicatechins generated autoxidation reaction with each other to form a series of oligomers that had the same [M ? H]? molecular ions (MS1) as those of natural procyanidins, but had completely different fragment ions (MS2). According to MS/MS analysis, the major fragments of these oligomers were derived not only from the retro‐Diels–Alder (RDA) dissociations on the C‐rings of the flavan‐3‐ol units, but also from the quinone‐methide (QM) cleavage of the interflavan linkages (IFL), and thus they were identified as B‐type dehydrodicatechins, B‐type dehydrotricatechins and A‐type dehydrotricatechins, respectively. The potential structures of their [M ? H]? molecular ions and partial fragment ions were deduced on the basis of the MS/MS characterization and the oxidation of flavan‐3‐ols in previous reports. Some specific fragment ions were found to be very useful for identifying the autoxidation oligomers (the B‐type dehydrodicatechins at m/z 393, the B‐type dehydrotricatechins at m/z 681 and the A‐type dehydrotricatechins at m/z 725). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
We report a rapid and sensitive method for detecting efavirenz in human plasma by electrospray ionization tandem mass spectrometry (ESI‐MS/MS). Detection of efavirenz in human plasma samples was confirmed by acquiring MS/MS of protonated efavirenz at m/z 316.5 to yield the characteristic fragment ions at m/z 298, 274, 272, 251, 246, 237, 232, 203 and 168, respectively. This approach provided good linearity for the quantification of efavirenz (R2 = ~0.9989), with good precision (RSD >10%) and limit of detection (0.20 nM). This method can be widely applied for precise quantitative analysis of a variety of drugs in clinical samples.  相似文献   

18.
Cells continuously produce reactive oxidative species that can modify all cellular components. In proteins, for example, cysteine, methionine, tryptophan (Trp), and tyrosine residues are particularly prone to oxidation. Here, we report two new approaches to distinguish two isomeric oxidation products of Trp residues, i.e. 5‐hydroxytryptophan (5‐HTP) and oxindolylalanine (Oia) residues, in peptides. First, 2‐nitrobenzenesulfenyl chloride, known to derivatize Trp residues in position 2 of the indole ring, was used to label 5‐HTP residues. The mass shift of 152.98 m/z units allowed identifying 5‐HTP‐ besides Trp‐containing peptides by mass spectrometry, whereas Oia residues were not labeled. Second, fragmentation of the Oia‐ and 5‐HTP‐derived immonium ions at m/z 175.08 produced ions characteristic for each residue that allowed their identification even in the presence of y1 ions at m/z 175.12 derived from peptides with C‐terminal arginine residues. The pseudo MS3 spectra acquired on a quadrupole time‐of‐flight hybrid mass spectrometer displayed two signals at m/z 130.05 and m/z 132.05 characteristic for Oia‐containing peptides and a group of six signals (m/z 103.04, 120.04, 130.04, 133.03, 146.04, and 148.04) for 5‐HTP‐cointaining peptides. In both cases, the relative signal intensities appeared to be independent of the sequence providing a specific fingerprint of each oxidative modification. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Detection of drugs in tissue typically requires extensive sample preparation in which the tissue is first homogenized, followed by drug extraction, before the extracts are finally analyzed by LC/MS. Directly analyzing drugs in intact tissue would eliminate any complications introduced by sample pretreatment. A matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS n ) method as been developed for the quantification of cocaine present in postmortem brain tissue of a chronic human cocaine user. It is shown that tandem mass spectrometry (MS2 and MS3) increase selectivity, which is critical for differentiating analyte ions from background ions such as matrix clusters and endogenous compounds found in brain tissue. It is also shown that the use of internal standards corrects for signal variability during quantitative MALDI, which can be caused by inhomogeneous crystal formation, inconsistent sample preparation, and laser shot-to-shot variability. The MALDI-MS n method developed allows for a single MS3 experiment that uses a wide isolation window to isolate both analyte and internal standard target ions. This method is shown to provide improved precision [∼10–20 times reduction in percent relative standard deviation (%RSD)] for quantitative analysis compared to using two alternating MS3 experiments that separately isolate the target analyte and internal standard ions.  相似文献   

20.
电喷雾质谱被应用于分辨2-氨基-1,3-恶嗪及六氢化-4-苯基-吡喃[2,3-d]嘧啶-2-酮的杂环结构。两类化合物均为三组份反应的产物,且其杂环的结构很难用NMR判断。实验首次系统研究了两类化合物的质谱学行为(包括氘代实验和高分辨质谱研究),发现前者在CID实验中丢失CH2N2和HCNO,而后者为直接丢失尿素。这些特征丢失为该类衍生物的结构判断,尤其是高通量的合成产物分析提供了重要的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号