共查询到20条相似文献,搜索用时 15 毫秒
1.
Carmina del Río Campos Author Vitae Paloma R. Horche Author Vitae 《Optics Communications》2010,283(15):3058-3066
Direct Modulation Lasers (DMLs) have attracted increased attention during the past few years because of their intrinsic simplicity and cost-effectiveness, especially when applied to WDM metro and access networks. However, the output power waveform from a directly modulated laser is not an exact replica of the modulation current and its instantaneous optical frequency varies with time depending on the changes in optical power and the extinction ratio (ER) (an effect also known as frequency chirp). In this work, using an Optical Communication System Design Software, we have studied a directly modulated WDM 10 Gb/s system which transmission performance depends strongly on DML characteristics; simulation results have provided supplementary details about the effects of DML type (adiabatic or transient chirp dominated) as well as the effects of the optical output power. These details can provide useful design guidelines for constructing a WDM metro network. 相似文献
2.
We investigated 20 channels at 10 Gb/s wavelength division multiplexing (WDM) transmission over 1190 km single mode fiber and dispersion compensating fiber using cascaded inline semiconductor optical amplifier at a span of 70 km for RZ-DPSK (return zero differential phase-shift keying) modulation format by using same channel spacing, i.e. 100 GHz. We show for RZ-OOK (return zero on-off keying) format a transmission distance of up to 1050 km with Q factor more than 15 dB, without any power drops. We developed the SOA model for inline amplifier having minimum cross-talks and ASE (amplified spontaneous emission) noise power with sufficient gain. At optimal bias current of 400 mA, a high constant gain of 36.5 dB is obtained up to a saturation power of 21.36 mW. So reduction of cross-talk and distortion is possible by decreasing the bias current at appropriate amplification factor.The DPSK modulation format has less cross-talk as compared to OOK format for nonlinearities and saturation case. The impact of optical power received and Q factor at different distance for both RZ-OOK and RZ-DPSK modulation format has been illustrated. We have shown the optical spectrum and clear Eye diagram at the transmission distance of 1190 km in RZ-DPSK system and 1050 km in RZ-OOK systems.The bit error rate (BER) for all channels observed is less than 10−10 up to gain saturation for both DPSK and OOK systems. Finally, we investigated that the transmission distance decreases with a decrease in channel spacing of up to 20 GHz. 相似文献
3.
In this paper, we optimize the inter-amplifier spacing in combination with duty cycle of RZ data format and EDFAs power so that link length of system can be maximized. The results for EDFA amplifier placement in 10 Gbps single channel dispersion managed optical communication system have been presented. By increasing the length of standard single mode fiber of dispersion 16 ps/nm/km in proportion to the increase in length of compensating fiber of dispersion −80 ps/nm/km, the pre-, post- and symmetrical-dispersion compensation schemes of the system have been compared. Further, schemes are observed at 8, 10 and 12 dBm values of EDFA power in the link with different duty cycle values of RZ optical pulse in the range of 0.2-0.8 with step size of 0.2 in relation to amplifier spacing to get lower value of bit error rate and timing jitter. The graphical results obtained show strong relationship among duty cycle of RZ optical pulse, EDFA power and, dispersion compensation scheme. 相似文献
4.
We have investigated the generation of the 40-GHz double-sideband optical millimeter (mm)-wave with signal carried only by its optical carrier via an embedded LiNbO3 Mach-Zehnder modulator (LN-MZM). Since the optical carrier and its two first-order sidebands are dominant and their powers are well balanced, the first-order harmonic in the photocurrent gets maximal. As the optical mm-wave signal is transmitted along the fiber, there is no code outline distortion because the signal is only modulated on the optical carrier. Although the first-order harmonic shows the periodical fading effect when the optical mm-wave signal is transmitted along the fiber, its degradation on the radio-over-fiber link can be avoided by adjusting the position of the fading nodes via varying the main MZM bias voltage, and the signal still keeps much good eye diagram even after 50-km fiber transmission. The experimental results prove our theory. 相似文献
5.
We present experimental and theoretical results on all-optical 10 and 20 Gb/s RZ to NRZ modulation format and wavelength converter based on a nonlinear optical loop mirror (NOLM). A vector model of converter was developed and the shape of converted pulses was found analytically for particular choice of polarization states. In the experiment, non-zero dispersion shifted fiber with a length 1200 m was used as a nonlinear medium. Pulses from a 10 GHz mode-locked semiconductor laser diode were modulated to form pseudorandom RZ signal and eventually time division multiplexed to 20 Gb/s. RZ pulses were subsequently converted to NRZ signal. The performance of the converter was evaluated experimentally using the data communication analyzer and bit error ratio tester. 相似文献
6.
A novel scheme to generate a 64 GHz optical millimeter (mm)-wave via a nested LiNbO3 Mach-Zehnder modulator with an 8 GHz local oscillator is proposed and simulated. Since the frequency response of the modulator and the local oscillator frequency are greatly reduced, the bandwidth requirements of the optical and electrical components in the transmitter are significantly decreased. The simulation results show that the generated optical mm-wave signal maintains good performance even after being transmitted over 20 km standard single-mode fiber. 相似文献
7.
Simulative analysis of co-existing 2.5 G/10 G asymmetric XG-PON system using RZ and NRZ data formats
In this paper, a fiber optic communication system has been employed using co-existing 10 G/2.5 G asymmetric gigabit passive optical network (XG-PON) architecture. In this system, bidirectional optical fiber has been used for upstream and downstream data transmission. The system performance has been investigated for non-return-to-zero (NRZ) and return-to-zero (RZ) data formats operating at varying bit rates by varying the length of the fiber for analyzing the feasibility of this co-existence. The results have been compared for NRZ and RZ formats for upstream and downstream data in terms of Q value and eye opening. It is observed that RZ modulation format is superior as compared to conventional NRZ format and the faithful transmission of signal has been carried up to 90 km at 1577 nm for downstream and 140 km at 1270 nm for upstream. 相似文献
8.
Surinder Singh Author Vitae 《Optics Communications》2008,281(9):2618-2626
The 40 Gb/s optical frequency converter for non-return to zero differential phase shift keying (NRZ-DPSK) signal by using four wave mixing in semiconductor optical amplifier (SOA) have achieved sucessfully. The optimized signal-to-pump ratio for NRZ-DPSK by using optimized SOA structure with enhanced FWM effect is also evaluated. The optimum signal-to-pump ratio is 12 dB and 10 dB with Q factor penalty of 0.685 dB and 0.663 dB. The dependence of four wave mixing efficiency and converted signal power on signal input power is studied and it is evaluated that four wave mixing efficiency decreases with increase in the input power. The impact of pump power, signal-to-pump ratio, and SOA parameters with Q factor penalty for 40 Gb/s has been illustrated. It has shown that converted signal power increases up to the saturation power of semiconductor optical amplifier, then decreases. It is observed that for the optimum pump power, OSNR of converted signal varies little with signal input power. 相似文献
9.
Jagjit Singh Malhotra 《Optik》2010,121(9):800-807
This paper presents the performance analysis of non-return-to-zero (NRZ), return-to-zero (RZ), chirped return-to-zero (CRZ) and carrier suppressed return-to-zero (CSRZ) data formats in optical soliton transmission link under the impact of chirp and third-order dispersion (TOD). The performance of these data formats has been analyzed on the basis of certain performance metrics, viz, bit error rate (BER), Q2 (dB), OSNR, eye opening, etc. It has been reported here that the performance of CRZ and CSRZ modulation format is better as compared to NRZ and RZ in a soliton transmission link. Further, CSRZ modulation format has been found to deliver optimum performance on the basis of performance evaluation metrics reported in this paper. In case of NRZ and CSRZ, comparatively narrow power spectrum has been observed. Best eye opening, highest value of Q2 (dB) of 18 dB and lowest value of BER of the order of 10−16 has been reported in case of CSRZ among the considered data formats. The results have been obtained by varying noise figure from 3.0 to 9.0. No considerable effect of noise was observed. It was observed that at very narrow and ultra short pulse width, OSNR value suffers heavily and reduced to even negative values in dB, thus inducing a high degree of OSNR power penalty. The results were obtained by varying chirp factor from −0.6 to +0.6. Negative chirp resulted in improved OSNR as compared to positive chirp. RZ data format yielded a broader optical spectrum, comparatively low spectral efficiency and poor OSNR thus it was found that RZ format is not suitable for optical soliton transmission under the impact of chirp and TOD. 相似文献
10.
This paper presents the comparative investigation and suitability of various data formats for optical soliton transmission links at 10 Gb/s for different chirps (−0.7 to 0.7). Here the investigations focused on data formats: NRZ, RZ soliton, RZ raised cosine and RZ super Gaussian. The comparative results and suitability of data formats is based on various performance measures such as Q-factor, eye opening, BER and jitter. It has been indicated that RZ super Gaussian yields the highest value of Q (34.08 dB), good eye opening and lowest BER. 相似文献
11.
White light interferometer can be used to measure the amplitude extinction ratio (ER) of polarizer and coupling distribution in fiber. A LiNbO3 polarizer coupled with a polarization maintaining fiber and a silica planar waveguide at the two ends was measured using white light interferometer. According to the principles of optical coherence domain polarimeter (OCDP) technique, the test scheme is analyzed and presented to measure the ER of LiNbO3 polarizer with its apparatus proposed correspondingly. By analyzing the interference intensity, both the ER of LiNbO3 polarizer and its coupling crosstalk with optical fiber and waveguide are obtained. The results illustrate that the ER of a 5 mm-long LiNbO3 polarizer is 71 dB and the crosstalk of the coupling points are around 40 dB. The results have good agreement with analysis. 相似文献
12.
In this paper, we have presented analysis of 10 Gbit/s optical OFDM-RoF transmissions links with distance of 50 km and reported the improved performance by usage of a square root module (SQRT). 相似文献
13.
A scheme of all-optical data format conversion from nonreturn-to-zero to return-to-zero is proposed using quantum-dot semiconductor optical amplifiers (QD SOAs) assisted Mach-Zehnder interferometer (MZI). The proposed scheme has the potential to operate at much larger bit rate ∼160 Gb/s, and the converted signal has a lower frequency chirp. 160 Gb/s all-optical format conversion is verified through numerical simulations, and the output contrast ratio and Q-factor are analyzed to evaluate the system performance. With properly selected parameters, the converted signal with a contrast ratio over 8 dB and a Q-factor over 8 can be achieved. 相似文献
14.
We propose a united theory that describes the two-center recording system by taking scattering noise into account. The temporal evolution of the signal-to-noise ratio in doubly doped photorefractive crystals is described based on jointly solving material equations and coupled-wave equations with the fourth-order Runge–Kutta method. Roles of microcosmic optical parameters of dopants on the signal-to-noise ratio are discussed in detail. The theoretical results can confirm and predict experimental results. 相似文献
15.
In this paper, 10 and 40 Gb/s optical systems have been investigated for nonreturn-to-zero (NRZ), return-to-zero (RZ), carrier-suppressed return-to-zero (CSRZ) and RZ-differential phase-shift-keying (RZ-DPSK) data formats. For the range of the optical signal power from −5 to 15 dBm, a maximum self-phase modulation (SPM)-limited transmission distance LSPM is determined with eye-opening penalty (EOP) >1 dB .The observations are based on the modeling and numerical simulation of optimum dispersion-managed transmission link. Transmission over distances of the order of several hundreds of kilometers has been shown with and without amplified spontaneous emission (ASE) noise of the in-line erbium-doped fiber amplifiers (EDFAs). 相似文献
16.
The effect of ferroelectric poling direction on the structure and electronic properties of the LiNbO3 (0 0 0 1) surface was characterized. Low energy and reflection high energy electron diffraction indicated that both the positively and negatively poled surfaces were (1 × 1) with no evidence of longer range periodic reconstructions. Low energy ion scattering spectra from both surfaces were dominated by scattering from oxygen atoms. X-ray and ultraviolet photoelectron spectra also showed little difference between the positively and negatively poled surfaces, with the exception of a high binding energy shoulder on the O 1s core level of the negative surface. Exposure of the surfaces to atomic hydrogen caused reduction of the surface Nb rather than an increase in intensity on the high binding energy side of the O 1s peak, indicating that the shoulder on the O 1s peak on the negative surface was not due to surface hydroxyl groups. Temperature programmed desorption measurements indicated that the nearly stoichiometric LiNbO3 samples were susceptible to loss of Li2O starting at temperatures as low as 500 K, independent of the poling direction. An adatom/vacancy model is proposed in which oxygen ad-anions accumulate on one side of the crystal while oxygen anion vacancies are created on the opposite surface. This model can explain the apparent oxygen termination of both surfaces and the observed (1 × 1) periodicity of the surfaces, and also effectively screens the thickness dependent electric field associated with the polar orientation of the crystal. 相似文献
17.
H. Kawanowa R. SoudaH. Ozawa Y. GotohK. Terabe S. TakekawaK. Kitamura 《Surface science》2003,538(3):L500
The atomic structure of LiNbO3(0 0 0 1) surface was investigated by low-energy neutral scattering spectroscopy (LENS). Poled stoichiometric LiNbO3 (SLN) samples were prepared for the measurements. The LENS was developed for surface structure and composition analysis particularly of highly insulating materials and was successfully applied to the structure analysis of the SLN(0 0 0 1) surface. The polar angle dependences of intensity of scattered He0 from the poled SLN surfaces indicate obvious differences between the negatively and the positively charged surfaces. It is suggested that O atoms cover the surfaces, and the first metal layers underneath the O layer consist of Li and Nb for negatively and positively charged surfaces, respectively, parallel to the applied electric field. 相似文献
18.
Undoped and MgO doped Lithium niobate single crystals were grown by the Czochralski technique. Comparative study of the optical properties of undoped and 7 mol% MgO doped LiNbO3 crystal was undertaken. The effect of doping on refractive indices as well as second harmonic generation has been experimentally analyzed. The results of the polarization characteristics of second harmonic generation (SHG) support the major contribution of Li-O bonds to optical nonlinearity. MgO doping reduces the number of localized excitons and the grown LiNbO3 crystal approaches the stoichiometric composition. This causes blue shift in the absorption edge of the crystals. 相似文献
19.
To investigate the possibility of manipulating the surface chemical properties of finely dispersed metal films through ferroelectric polarization, the interaction of palladium with oppositely poled LiNbO3(0 0 0 1) substrates was characterized. Low energy ion scattering indicated that the Pd tended to form three-dimensional clusters on both positively and negatively poled substrates even at the lowest coverages. X-ray photoelectron spectroscopy (XPS) showed an upward shift in the binding energy of the Pd 3d core levels of 0.9 eV at the lowest Pd coverages, which slowly decayed toward the bulk value with increasing Pd coverage. These shifts were independent of the poling direction of the substrate and similar to those attributed to cluster size effects on inert supports. Thus, the spectroscopic data suggested that Pd does not interact strongly with LiNbO3 surfaces. The surface chemical properties of the Pd clusters were investigated using CO temperature programmed desorption. On both positively and negatively poled substrates, CO desorption from freshly deposited Pd showed a splitting of the broad 460 K desorption peak characteristic of bulk Pd into distinct peaks at 270 and 490 K as the Pd coverage was decreased below 1.0 ML; behavior that also resembles that seen on inert supports. It was found that a small fraction of the adsorbed CO may dissociate (<2%) for Pd on both positively and negatively poled substrates. The thermal response of the smaller Pd clusters on the LiNbO3 surfaces, however, was different from that of inert substrates. In a manner similar to Nb2O5, when CO desorption experiments were carried out a second time, the adsorption capacity decreased and the higher temperature desorption peak shifted from 490 K to below 450 K. This behavior was independent of the substrate poling direction. Thus, while there was evidence that LiNbO3 does not behave as a completely inert support, no significant differences between positively and negatively poled surfaces were observed. This lack of sensitivity of the surface properties of the Pd to the poling direction of the substrate is attributed to the three-dimensional Pd clusters being too thick for their surfaces to be influenced by the polarization of the underlying substrate. 相似文献
20.
Chunyan Cao Hyun Kyoung Yang Byung Kee Moon Jung Hyun Jeong Kwang Ho Kim 《Optics Communications》2011,284(23):5453-5456
By controlling the pH values of prepared solutions, the 10 mol% Ce3+, 5 mol% Tb3+ co-doped KGdF4 (synthesized with pH = 3) and the 10 mol% Ce3+, 5 mol% Tb3+ co-doped GdF3 (synthesized with pH = 1) submicro/nanocrystals have been synthesized based on a citric acid assisted hydrothermal method. For comparison, the samples synthesized by co-precipitation method (without hydrothermal treatment) with pH = 3 and 1 were also collected. The X-ray diffraction data illustrate that the hydrothermal treated KGdF4 sample crystallizes in the cubic phase and the GdF3 sample crystallizes in the orthorhombic phase. However, the samples synthesized by co-precipitation method with pH = 3 and 1 are both cubic phase KGdF4. The field emission scanning electron microscopy images suggest that the hydrothermal treated KGdF4 submicro/nanocrystals present spherical morphology and the GdF3 submicrocrystals are rhombic-shaped. And the photoluminescence excitation and emission spectra as well as the luminescent dynamic curves demonstrate the difference in optical properties of the two hydrothermal treated samples. 相似文献