首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the versatile ligand 1H-3-(3-pyridyl)-5-(4-pyridyl)-1,2,4-triazole (3,4′-Hbpt) (1), a series of coordination compounds [Ni(3,4′-Hbpt)(ip)] (2), [Ni(3,4′-Hbpt)2(tp)(H2O)2] (3), [Ni2(3,4′-Hbpt)(5-NO2-ip)2(H2O)4] (4) and [Ni(3,4′-Hbpt)(pm)0.5(H2O)3]·2H2O (5) have been hydrothermally constructed through R-phenyldicarboxyl (R = H, NO2 and COOH) intervention effect (ip = isophthalic anion, tp = terephthalic anion, 5-NO2-ip = 5-NO2-isophthalic anion, pm = pyromellitic anion). Structural analysis reveals that 3,4′-Hbpt adopts μ-Npy, Npy coordination modes in two typical conformations in these target coordination compounds. In cooperation with the auxiliary ligands benzenedicarboxylate connectors, a variety of Ni(II) coordination networks such as 2-D layer with (4, 4) topology (2) 1-D chain (3), honeycomb (4) and 2-D helical chains (5) have been assembled. Theoretical calculation based on density functional theory (DFT) for ligand (1) is also employed to explicate the stability of the different conformations. Moreover, thermal stability of these crystalline materials is explored by TG-DTG.  相似文献   

2.
Two new Mn(II) coordination polymers formed with molecular formula [Mn(H2O)2(HBTC)·(H2O)] 1 and [Mn(H2O)2(4,4′bipy)(HBTC)2]·(H4,4′bipy)2 2, where BTC = 1,2,4-benzenetricarboxylate and 4,4′bipy = 4,4′bipydine, have been synthesized via hydrothermal approach and characterized by single crystal X-ray diffraction techniques. 1 is composed of Mn–H2O–Mn 1D chains and further the chains are linked by HBTC ligands to form a 2D network in the ab plane; 2 is constructed by Mn–4,4′bipy–Mn 1D chains along the b direction with Mn2+ ions coordinated to H2BTC and water as terminal ligands to form a 2D network. We also prepared a third compound with the molecular formula of [Mn(H2O)(HBTC)·(H2O)] which has been recently structurally reported elsewhere. The magnetic properties of the three compounds have been studied in detail under variable temperatures.  相似文献   

3.
Three new cobalt(Ⅱ) coordination compounds,[Co(3,3’-Hbpt)2(H2pm)(H2O)2]·2H2O(1),[Co(4,4’-Hbpt)(pm)0.5(H2O)]·3H2O (2) and [Co(3,4’-Hbpt)(pm) 0.5 (H2O)3]·2H2O(3)(3,3’-Hbpt=3,5-bis(3-pyridyl)-1H-1,2,4-triazole;4,4’-bpt=3,5-bis(4-pyridyl)1H-1,2,4-triazole,3,4’-Hbpt=3-(3-pyridyl)-5-(4’-pyridyl)-1H-1,2,4-triazole and H4pm=pyromellitic acid) have been synthesized by hydrothermal reactions.Single-crystal X-ray diffraction reveals that compound 1 has a one-dimensional (1D) chain network,2 exhibits a four-connected three-dimensional (3D) structure with 1D open channels encapsulated by water molecules,while 3 displays a regular two-dimensional (2D) architecture connected through 1D metal helical chains.In addition,the efficacy of compounds 1-3 as additives to promote the thermal decomposition of ammonium perchlorate (AP) is explored by differential scanning calorimetry (DSC).  相似文献   

4.
Two coordination polymers based on vanadium-substituted Keggin polyoxotungstophosphates as bridging ligands, {[Ni(4,4′-bipy)1.5(OH)(H2O)]2[H3PW10V2O40]}·4H2O (4,4′-bpy = 4,4′-bipyridine) 1 and {[Ni(dpa)2][Ni(dpa)(H2O)3]2[PW9V3O40]}·4H2O (dpa = 2,2′-dipyridylamine) 2, have been obtained by hydrothermal reactions and characterized by elemental analysis, IR, XRD, TGA and single-crystal X-ray Diffraction analysis. Compound 1 is a 2D layered structure built from 1D infinite zigzag {Ni2(4,4′-bipy)3(OH)2(H2O)2}n2+ chains bridged via [H3PW10V2O40]2− anions. Compound 2 exhibits a one-dimensional chain-like structure constructed from [Ni(dpa)2]2+ fragments bridged via bis-supported Keggin polyoxoanions [Ni(dpa)(H2O)3]2[PW9V3O40]2−. The two examples demonstrate that vanadium-substituted Keggin polyoxometalates have greater coordination capability.  相似文献   

5.
Four Cd(II)- and Cu(II)-containing coordination polymers (CPs) based on a multidentate N-donor ligand and varied dicarboxylate anions, [Cd(3,3′-tmbpt)(p-bdc)]·2.5H2O (1), [Cd(3,3′-tmbpt)(m-bdc)]·2H2O (2), [Cu(3,3′-tmbpt)(m-bdc)]·H2O (3), and [Cu(3,3′-tmbpt)(p-bdc)]·2H2O (4), where 3,3′-tmbpt = 1 ? ((1H-1,2,4-triazol-1-yl)methyl)-3,5-bis(3-pyridyl)-1,2,4-triazole, p-H2bdc = 1,4-benzenedicarboxylic acid, and m-H2bdc = 1,3-benzenedicarboxylic acid, have been prepared hydrothermally. The structures of the compounds were determined by single-crystal X-ray diffraction analyses and further characterized by infrared spectra and elemental analyses. Compound 1 exhibits a 3-D twofold interpenetrating framework with a 65·8 CdSO4 topology. Compound 2 is a 2-D layer containing meso-helical chains with a 44·62 sql topology. Compound 3 shows a 1-D → 3-D interdigitated architecture while 4 displays a 2-D → 3-D interdigitated architecture. The structural differences of the compounds indicate that the dicarboxylate anions and the central metal ions play important roles in the resulting structures of CPs. Optical band gaps and solid-state photoluminescent properties have also been studied.  相似文献   

6.
Under similar hydrothermal synthetic conditions, the reactions of Fe(NO3)3/FeCl2, CuCl2, NiCl2, and CdCl2 with phenanthroline (phen) and 3,3′,4,4′-biphenyltetracarboxylic acid (H4BPTC) afforded complexes [Fe(phen)3](H3BPTC)2 (1), [Cu(phen)(BPTC)0.5 · H2O] · H2O (2), [Ni3(phen)3(BPTC)1.5(H2O)5] · 4H2O (3) and [Cd(phen)(BPTC)0.5] · H2O (4). The short Fe–N distance in the monomeric Fe(phen)3(H3 BPTC)2 (1) shows that the Fe(II) is in a low-spin state. H3 BPTC4− acts as a counter-ion in this complex. In [Cu(phen)(BPTC)0.5 · H2O] · H2O (2), the central Cu(II) is five-coordinated in a square-pyramidal geometry. The ligand BPTC4− is centrosymmetric and the four deprotonated carboxylic groups of BPTC4− are coordinated to four different copper ions to form a 1D ladder complex indicating a comparatively strong coordination. In [Ni3(phen)3(BPTC)1.5(H2O)5] · 4H2O (3), all nickel(II) atoms are in an octahedral coordination environment. There are two different BPTC4− ligands; one is centrosymmetric and the other is asymmetric. Metal ions are linked through fully deprotonated BPTC4− ligands to form a 2D metal-organic sheet. [Cd(phen)(BPTC)0.5] · H2O (4) has a 3D metal-organic framework. TG, IR, and fluorescence data for the complexes are presented.  相似文献   

7.
Two CoII complexes, namely {[CoL(MeOH)(μ-OAc)]2Co}·2MeCN·2MeOH (1) and {[CoL(EtOH)(μ-OAc)]2Co}·3EtOH (2) (H2L=3,3′-dimethoxy-2,2′-[(1,3-propylene)dioxybis(nitrilomethylidyne)]diphenol), have been synthesized and characterized by X-ray crystallography. Both complexes contain octahedral coordination geometries, comprising three CoII atoms, two deprotonated bisoxime L2− units in which four μ-phenoxo oxygen atoms form two [CoL(X)] (X = MeOH or EtOH) units, two acetate ligands coordinated to three CoII centers through Co–O–C–O–Co bridges, and coordinated and non-coordinated solvent. Both complexes exhibit 2D supramolecular networks through different intermolecular hydrogen-bonding interactions.  相似文献   

8.
Two molybdenum (VI) hydrogen-bonded network polymers [MoO2F4]·(4,4′-H2bpd)(H2O)2 (1) and [MoO2Cl3(H2O)]·(4,4′-H2bpd)Cl (2) (bpd = bipiperidine) have been synthesized and examined as catalysts for epoxidation of cyclooctene. Complexes of the Mo compounds containing the bpd ligand are prepared and characterized by infrared spectroscopy, thermogravimetric and elemental analyses. They have been structurally characterized by single crystal X-ray diffraction analysis. The structures of both the complexes are shown to be comprised of molybdenum and two protonated N-ligand cations that have resulted in a cross-linked hydrogen-bonded network structure. These complexes are applicable as catalysts for the cis-cyclooctene epoxidation reactions with hydrogen peroxide as a source of oxygen and NaHCO3 as a cocatalyst. It has been observed that the formation of the oxidant peroxymonocarbonate ion, HCO4 by hydrogen peroxide and bicarbonate enhances the epoxidation reaction. Both the complexes have exhibited a good activity and a very high selectivity for the formation of cyclooctene oxide. An erratum to this article can be found at  相似文献   

9.
Four novel organic–inorganic hybrid compounds [Cu5 I(4,4′-bpy)3(2,2′-bpy)4][BW12O40] · H2O (1), [Ni0.5(2,2′-bpy)1.25][Ni(2,2′-bpy)3][Ni(2,2′-bpy)2(H2O)(SiW11VIWVO40)] · 0.5H2O (2), [H2bpy]2[Zn(2,2′-bpy)3]2[Si2W18O62] · 1.5H2O (3) and [CuII(2,2′-bpy)2]2[SiW12O40] · 2H2O (4) (2,2′-bpy = 2,2′-bipyridine, 4,4′-bpy = 4,4′-bipyridine) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, thermal gravimetric analysis, electrochemical measurements and single-crystal X-ray diffraction. Compound (1) is a novel [BW12O40]5− polyoxoanion bisupported by copper(I) coordination cations with mixed 2,2′-bpy and 4,4′-bpy ligands. Compound (2) is constructed from the [SiW11VIWVO40]5− polyoxoanions supported by [Ni(2,2′–bpy)2]2+. Compound (3) is composed of a novel [Si2W18O62]8− cluster and [Zn(2,2′–bpy)3]2+ complexes, which held together into a three-dimensional (3D) supramolecular network through hydrogen-bonding interactions. Compound (4) shows a 2D layer framework constructed from a bisupporting Keggin polyoxoanion cluster and [Cu(2,2′–bpy)2]2+ coordination polymer fragments, resulting in 3D networks via supramolecular interactions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Two new materials built from reduced molybdenum (V) phosphates as building blocks and zinc coordination complexes as linkers, (H3O)2[Zn(2,2′-bpy)]4[Zn(H2O)]2[Zn(HPO4)2 (PO4)6(MoO2)12(OH)6] · 6H2O (2,2′-bpy=2,2′-bpyridine) 1 and [Zn(phen)(H2O)2]2[Zn(phen) (H2O)]2[Zn(H2O)]2[Zn(HPO4)4 (PO4)4(MoO2)12 (OH)6] · 7H2O (phen=1,10-phenanthroline) 2, have been synthesized and characterized by elemental analyses, IR, TG, and single crystal X-ray diffraction. Compound 1 is a new 3-D structure which constructed from Zn[P4Mo6]2 dimers bonded together with [Zn(2,2′-bpy)] coordination complexes and [Zn(H2O)] fragments. In compound 2, the Zn[P4Mo6]2 dimeric units are linked by [Zn(phen)(H2O)] coordination complexes and [Zn(H2O)] fragments to form a new 2-D framework. The fluorescent activities of compounds 1 and 2 were reported. The crystal data for the two compounds are the following: 1, triclinic, P−1, a=13.036(3) ?, b=13.765(3) ?, c=14.459(3) ?, , Z=1; 2, triclinic, P−1, a=12.708(3) ?, b=14.016(3) ?, c=14.646(3) ?, , Z=1.Dedicated to Professor Michael T. Pope on the occasion of his retirement.  相似文献   

11.
Hydrothermal reactions of 1H-3-(2-pyridyl)-5-(3-pyridyl)-1,2,4-triazole (2,3′-Hbpt) with CdCl2 and CdI2 yielded three new coordination polymers, {[CdCl(2,3′-bpt)(H2O)]·2H2O}n (1), {[Cd2I3(2,3′-H0.5bpt)2]}n (2), and [CdI3(2,3′-Hbpt)](2,3′-H2bpt)·H2O (3). Structural analysis reveals that 1 has a 1-D double chain structure; in 2, 2,3′-bpt bridges adjacent Cd(II) ions to form a 1-D twofold helical chain, which further connects via μ2-I-, giving a 2-D grid structure in the ab plane; 3 is mononuclear. These complexes are further connected through weak hydrogen bonding interactions, and/or weak π···π stacking interactions, to generate 3-D supramolecular structures. The fluorescence properties of 1 and 2 have been investigated in the solid state at room temperature.  相似文献   

12.

Abstract  

Four complexes of 3,3-diphenylpropanoate (L) and 4,4′-bipyridine as auxiliary bridging ligands were synthesized and characterized, namely [Zn(L)2(4bpy)(EtOH)2] (1), [Co(L)2(4bpy)(EtOH)2] (2), [Ni(L)2(4bpy)(EtOH)2] (3), and [Cu(L)2(4bpy)(H2O)] (4) (4bpy = 4,4′-bipyridine). X-ray single-crystal diffraction analyses show that complexes 14 all take one-dimensional (1D) fishbone-like structures incorporating bridging 4bpy ligands. The complexes show different supramolecular frameworks interlinked via intermolecular hydrogen bonds, π···π stacking, and/or C–H···π supramolecular interactions. Complex 3 only has a simple one-dimensional fishbone-like chain, whereas complexes 1 and 2 show two-dimensional supramolecular structures by interchain C–H···O hydrogen bonds. Complex 4 is assembled into two-dimensional layers and then an overall three-dimensional framework by a combination of interchain O–H···O hydrogen bonds and C–H···π supramolecular interactions. The luminescent properties of the ligands and their complexes were investigated.  相似文献   

13.
We report the reactivity of three binuclear non-heme Fe(III) compounds, namely [Fe2(bbppnol)(μ-AcO)(H2O)2](ClO4)2 (1), [Fe2(bbppnol)(μ-AcO)2](PF6) (2), and [Fe2(bbppnol)(μ-OH)(Cl)2]·6H2O (3), where H3bbppnol = N,N′-bis(2-hydroxybenzyl)-N,N′-bis(2-methylpyridyl)–1,3-propanediamine-2-ol, toward the hydrolysis of bis-(2,4-dinitrophenyl)phosphate as models for phosphoesterase activity. The synthesis and characterization of the new complexes 1 and 3 was also described. The reactivity differences observed for these complexes show that the accessibility of the substrate to the reaction site is one of the key steps that determinate the hydrolysis efficiency.  相似文献   

14.
Four silver(I) complexes, namely [Ag2(bpe)2](bdc)·8H2O (1), [Ag2(bpe)2(da)]·4H2O (2), [Ag4(bpe)3(bptc)]·9H2O (3), and Ag(bpe)2(bpdc)2 (4), have been successfully synthesized by the reactions between AgNO3, 1,2-bis(4-pyridyl)ethane (bpe) and different carboxylic acids, including 1,3-benzenedicarboxylic acid (H2bdc), diphenic acid (H2da), 3,3′,4,4′-biphenyltetracarboxylic acid (H4bptc), and 2,2′-bipyridine-3,3′-dicarboxylic acid (H2bpdc). All four compounds were characterized by elemental analysis, IR spectra, and single-crystal X-ray diffraction. In (1), the Ag(I) atoms, in linear geometry, are joined into 1-D infinite cationic bpe-silver chains, and discrete bdc2− anions compensate the charge of the crystal structure. In (2), the Ag(I) atoms, adopting tetrahedral and trigonal geometries, are linked by bpe and da2− ligands into neutral double chains. In (3), the Ag(I) atoms, in T-shaped and linear environments, are coordinated by bpe and multidentate bptc4− ligands to construct a 2-D network. And in (4), the Ag(I) atoms, with trigonal and T-shaped coordination geometries, are coordinated by bpe and bpdc2− ligands to build up a 3-D framework. The different anions play different and important roles in directing the final crystal structures.  相似文献   

15.
In the interaction of Zn(NO3)2·6H2O and adamantane-1,3,5,7-tetracarboxylic acid (H4atc) in N,N′-dimethyl formamide (DMF) a three-dimensional coordination polymer with the composition [Zn2(dmf)(H2O)(atc)]·0.75DMF·0.5H2O (1) is produced. Its structure is determined by a single crystal X-ray diffraction study.  相似文献   

16.
Two supermolecular co-ordination polymers [M(5-NO2-BDC)(H2O)6] [M = Sr(1), Ba(2)] were prepared by the assembly of alkaline earth metal cations and symmetric organic ligand 5-NO2-H2BDC, respectively. These two complexes have been characterized with the aid of elemental analysis, thermal analysis, infrared spectroscopic and X-ray crystallography. Both 1 and 2 have a similar 3D flowerlike supramolecular assembled by multiple interpenetration of the 1D chains where 12-membered rings share common C–O–M edges with each other extended by O–H···O hydrogen bonds. The co-ordination geometry around M (II) ions could be described as distorted tricapped trigonal prism arrangements.  相似文献   

17.
以4-(2-(4-咪唑)苯乙烯基)吡啶(ISPE)为配体,分别与间苯二甲酸(1,3-H_2BDC)、4,4′-联苯二甲酸(4,4′-H_2BPDC)和4,4′-二苯乙烯二甲酸(4,4′-H_2STDC)及过渡金属盐Cd(NO3)2·4H_2O通过溶剂热自组装形成了3种配位聚合物晶体{[Cd_2(ISPE)_2(1,3-BDC)_2]·DMF}_n(1)、[Cd(ISPE)(4,4′-BPDC)]_n(2)和[Cd(ISPE)_2(4,4′-STDC)(H_2O)_2]_n(3)。并用单晶X射线衍射、PXRD、红外光谱、元素分析、热重等对其进行了表征。单晶解析结果表明:配位聚合物1是二维层状网格结构,配位聚合物2是一个六重穿插的类金刚烷三维网格结构,配位聚合物3是由一维网格结构通过氢键和分子间作用力堆积形成的三维网格结构。另外还研究了它们的室温固态荧光性能。  相似文献   

18.
通过水热或溶剂热合成的方法制备了5个一维配合物{[Zn(btbb)_(0.5)(m-phda)]·0.5H_2O}_n(1),{[Cd_2(btbb)(adtda)_2(H_2O)]·H_2O}_n(2),[Mn_2(btbb)(tbi)_2]_n(3),{[Cd(btbb)_(0.5)(3-Nitro-o-bdc)(H_2O)]·H_2O}_n(4)和[Cd_2(btbb)(tbi)_2]_n(5)(btbb=1,4-双(2-(4-噻唑基)苯并咪唑-1-基甲基)苯,m-H_2phda=间苯二甲酸,H_2adtda=1,3-金刚烷二羧酸,H_2tbi=5-叔丁基间苯二甲酸,3-Nitro-o-H_2bdc=3-硝基-1,2-苯二甲酸)。配合物1是一个包含22元环的一维链。配合物2是一个包含8元环的一维链,并且氮配体在这个一维链中仅仅起到装饰作用。配合物3是一个一维双链结构。配合物4是一个包含14元环的一维链。配合物5是一个阶梯状的一维双链结构。  相似文献   

19.
The synthesis and thermal behavior of the new [Pd(fum)(bipy)] n ·2nH2O (1), [Pd(fum)(bpe)] n ·nH2O (2) and [Pd(fum)(pz)] n ·3nH2O (3) {bipy = 4,4′-bipyridine, bpe = 1,2-bis(4-pyridyl)ethene and pz = pyrazine} fumarate complexes are described in this work as well their characterization by IR and 13C CPMAS NMR spectroscopies. TG curves showed that the compounds released organic ligands and lattice water molecules in the temperature range of 46–491 °C. In all the cases, metallic palladium was identified as the final residue.  相似文献   

20.
Solid complex compounds of Fe(II) and Fe(III) ions with rutin were obtained. On the basis of the elementary analysis and thermogravimetric investigation, the following composition of the compounds was determined: (1) FeOH(C27H29O16)·5H2O, (2) Fe2OH(C27H27O16)·9H2O, (3) Fe(OH)2(C27H29O16)·8H2O, (4) [Fe6(OH)2(4H2O)(C15H7O12)SO4]·10H2O. The coordination site in a rutin molecule was established on the basis of spectroscopic data (UV–Vis and IR). It was supposed that rutin was bound to the iron ions via 4C=O and 5C—oxygen in the case of (1) and (3). Groups 5C–OH and 4C=O as well as 3′C–OH and 4′C–OH of the ligand participate in binding metals ions in the case of (2). At an excess of iron(III) ions with regard to rutin under the synthesis conditions of (4), a side reaction of ligand oxidation occurs. In this compound, the ligands’ role plays a quinone which arose after rutin oxidation and the substitution of Fe(II) and Fe(III) ions takes place in 4C=O, 5C–OH as well as 4′C–OH, 3′C–OH ligands groups. The magnetic measurements indicated that (1) and (3) are high-spin complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号