首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The excitation and propagation of finite-amplitude low-frequency solitary waves are investigated in an argon plasma impregnated with kaolin dust particles. A nonlinear longitudinal dust acoustic solitary wave is excited by pulse modulating the discharge voltage with a negative potential. It is found that the velocity of the solitary wave increases and the width decreases with the increase of the modulating voltage, but the product of the solitary wave amplitude and the square of the width remains nearly constant. The experimental findings are compared with analytic soliton solutions of a model Korteveg-de Vries equation.  相似文献   

2.
近共振区超短强激光脉冲激发的等离子体尾波场   总被引:1,自引:1,他引:0       下载免费PDF全文
 用一维相对论粒子模拟研究了相对论超短强激光脉冲在等离子体中传播时激发的尾波场,初步获得了近共振区尾波场的峰值幅度随激光脉冲宽度变化的特点,发现在近共振区等离子体波激发出现增强。通过准静态近似下尾波激发的一维非线性方程数值求解,并与粒子模拟结果比较,得到了该非线性方程的适用范围:当激光脉冲宽度小于等离子体波波长的4倍时,该方程所得结果与粒子模拟结果一致;而当激光脉冲宽度大于该数值时,该方程不再适用。  相似文献   

3.
The chaotic dynamics of nonlinear waves in the harmonic-forced fluid-conveying pipe in primary parametrical resonance, is explored analytically and numerically. The multiple scale method is applied to obtain an equivalent nonlinear wave equation from the complicated nonlinear governing equation describing the fluid conveyed in a pipe. With the Melnikov method, the persistence of a heteroclinic structure is shown to be satisfied and its condition is given in functional form. Similarly, for the heteroclinic orbit, using geometric analysis, a condition function of the stable manifold is derived for the orbit to return to the stable manifold from the saddle point. The persistent homoclinic structures and threshold of chaos in the Smale-horseshoe sense are obtained for the fluid-conveying pipe under both conditions, indicating how the external excitation amplitude can change substantially the global dynamics of the fluid conveyed in the pipe. A numerical approach was used to test the prediction from theory. The impact of the external excitation amplitude on the nonlinear wave in the fluid-conveying pipe was also studied from numerical simulations. Both theoretical predications and numerical simulations attest to the complex chaotic motion of fluid-conveying pipes.  相似文献   

4.
用一维相对论粒子模拟研究了相对论超短强激光脉冲在等离子体中传播时激发的尾波场,初步获得了近共振区尾波场的峰值幅度随激光脉冲宽度变化的特点,发现在近共振区等离子体波激发出现增强。通过准静态近似下尾波激发的一维非线性方程数值求解,并与粒子模拟结果比较,得到了该非线性方程的适用范围:当激光脉冲宽度小于等离子体波波长的4倍时,该方程所得结果与粒子模拟结果一致;而当激光脉冲宽度大于该数值时,该方程不再适用。  相似文献   

5.
A theoretical investigation has been made of nonlinear propagation of ultra-low-frequency electromagnetic waves in a magnetized two fluid (negatively charged dust and positively charged ion fluids) dusty plasma. These are modified Alfvén waves for small value of and are modified magnetosonic waves for large , where is the angle between the directions of the external magnetic field and the wave propagation. A nonlinear evolution equation for the wave magnetic field, which is known as Korteweg de Vries (K-dV) equation and which admits a stationary solitary wave solution, is derived by the reductive perturbation method. The effects of external magnetic field and dust characteristics on the amplitude and the width of these solitary structures are examined. The implications of these results to some space and astrophysical plasma systems, especially to planetary ring-systems, are briefly mentioned. Received 8 July 1999 and Received in final form 11 October 1999  相似文献   

6.
The excitation of a plasma wave by two laser beams, whose frequency difference is near the plasma frequency, is studied in a plasma with a density that is slowly increasing with time due to ongoing ionization as appropriate for experiments done in laser breakdown plasmas. Numerical integration of the relativistic equation for the evolution of the wave amplitude reveals that for a rate of increase of the plasma density of approximately 1017 cm-3/ns at a laser intensity I = 1014 W/cm2, the wave amplitude can rise considerably above the relativistic saturation limit of Rosenbluth and Liu which was obtained for a plasma of constant density. This increase in plasma density compensates the reduction in plasma frequency caused by the relativistic electron mass increase when the wave amplitude is large. The frequency and phase excursions of the plasma wave are reduced for an optimum time increasing density. We find that moderate damping can stabilize both the amplitude and the phase of the plasma wave with respect to the pump.  相似文献   

7.
The results of a study on the influence of the nonparabolicity of the free carriers dispersion law on the propagation of surface polaritons (SPs) located near the interface between an n-type semiconductor and a metal arc reported. The semiconductor plasma is assumed to be warm and nonisothermal. The nonparabolicity of the electron dispersion law has two effects. The first one is associated with nonlinear self-interaction of the SPs. The nonlinear dispersion equation and the nonlinear Schrodinger equation for the amplitude of the SP envelope are obtained. The nonlinear evolution of the SP is studied on the base of the above mentioned equations. The second effect results in third harmonics generation. Analysis shows that these third harmonics may appear as a pure surface polariton, a pseudosurface polariton, or a superposition of a volume wave and a SP depending on the wave frequency, electron density and lattice dielectric constant.  相似文献   

8.
Linear dispersion relation for linear wave and a Kadomtsev-Petviashvili (KP) equation for nonlinear wave are given for the unmagnetized two-ion-temperature cold dusty plasma with many different dust grain species. The numerical results of variationsof linear dispersion with respect to the different dust size distribution are given. Moreover, how the amplitude, width, and propagation velocity of solitary wave vary vs different dust size distribution is also studied numerically in this paper.  相似文献   

9.
非均匀交换各向异性铁磁介质的非线性表面自旋波   总被引:2,自引:0,他引:2       下载免费PDF全文
徐岩  薛德胜  左维  李发伸 《物理学报》2003,52(11):2896-2990
利用Landau-Lifshitz 方程,研究了具有非均匀交换各向异性的半无限大铁磁体的非线性表 面自旋波理论。导出了部分钉扎纯交换铁磁介质的磁化强度所满足的边界条件和非线性表面 自旋波的色散关系,并获得了自旋波振幅沿z方向驻波的一维非线性Schrdinger方程和包 络振幅沿平面传播的二维非线性Schrdinger方程,结果表明铁磁体磁化强度的包络振幅随时空变化的性质是由二维非线性Schrdinger方程决定的。因此预言铁磁介质的表面非线性激发应是二维孤波的形式。对于弱非线性表面自旋波,对非线性Schrdinger方程存在孤子形式解的可能性作了讨论. 关键词: 表面自旋波 Landau-Lifshitz方程 非线性Schrdinger方程 孤子  相似文献   

10.
陶在红  秦媛媛  孙斌  孙小菡 《物理学报》2016,65(13):130301-130301
量子信息在光纤中传输时,会受到光纤损耗、色散、非线性效应等多因素的影响,将产生传输态的演化与能量转移.本文以单模光纤传输方程以及电磁场量子化理论为基础,对单模光纤中基模模场进行量子化处理,推导并建立了考虑损耗、色散、非线性效应后的单光子传输方程.基于微扰法对单光子非线性传输方程进行了求解,给出了稳定解存在的必要条件及其所满足的色散方程.深入讨论了广域光功率随微扰频率的变化关系,并且分析了光纤色散、非线性效应对解的影响.为量子光纤传输系统性能的深入研究奠定了理论基础.  相似文献   

11.
A nonlinear beat-wave regime of plasma wave excitation is considered. Two beat-wave drivers are considered: intensity-modulated laser pulse and density-modulated (microbunched) electron beam. It is shown that a long beat-wave pulse can excite strong plasma waves in its wake even when the beat-wave frequency is detuned from the electron plasma frequency. The wake is caused by the dynamic bistability of the nonlinear plasma wave if the beat-wave amplitude exceeds the analytically calculated threshold. In the context of a microbunched beam driven plasma wakefield accelerator, this excitation regime can be applied to developing a femtosecond electron injector.  相似文献   

12.
ABSTRACT

The propagation of magnetoacoustic (fast magnetohydrodynamic) waves in pair-ion (PI) fullerene plasma is studied in the linear and nonlinear regimes. The pair-ion (PI) fullerene plasma is theorized as homogeneous, magnetized, warm and collisionless. Employing multi-fluid magnetohydrodynamic model, the dispersion relation is obtained and wave dispersion effects which appear through ion inertial length are discussed. Using reductive perturbation technique (RPT), the Korteweg–de Vries (KdV) equation is derived and its solution for small but finite amplitude magnetoacoustic solitons propagating in the direction perpendicular to the external magnetic field is presented. The compressive magnetoacoustic soliton (i.e. positive potential pulse) propagating with super Alfvénic speed is obtained in magnetized PI fullerene plasma. The variations in the amplitude and width of the magnetoacoustic soliton structures are also illustrated by using numerical values of the plasma parameters such as ions' density, temperature difference between fullerene ions and magnetic field intensity, which have been taken from the PI plasma experiments already published in the literature.  相似文献   

13.
Parametrical excitation of surface type X-modes (STXM) at the second harmonic of electron cyclotron frequency by nonmonochromatic external alternating electric field is under consideration. STXM are the eigenmodes of a planar magnetoactive plasma waveguide structure consisting of a metal wall with dielectric coating and uniform plasma filling. An external steady magnetic field is applied along the plasma interface, so it is perpendicular to the group velocity of the considered extraordinarily polarized waves. Influence of the plasma waveguide parameters on the parametrical instability of the STXM is studied. External alternating electric field is assumed to consist of two fields with different amplitudes and frequencies. A theoretical investigation is carried out using kinetic equation for plasma particles under the conditions of weak plasma spatial dispersion and small amplitudes of external electric fields. The obtained results can be useful for research in branch of edge plasma physics.  相似文献   

14.
Self-focusing dynamics of electromagnetic pulses of arbitrary duration is analyzed numerically and analytically. The wave-field evolution is considered by the wave equation in the reflectionless approximation under quite general assumptions about the dispersion of the medium. Methods for qualitative investigation of the self-focusing dynamics of quasimonochromatic radiation are generalized to the case of wave packets with the length of a few oscillation periods. In particular, sufficient conditions for collapse and many other integral relations are obtained by the momentum method. A self-similar-type transformation is used to show that new structural features are primarily associated with the nonlinear dispersion of the medium (with the dependence of the group velocity of a wave packet on its amplitude). Numerical analysis confirms that the self-focusing of radiation is preceded by an increase in the steepness of the longitudinal profile.  相似文献   

15.
The nonlinear ion-acoustic wave excitation and its stability analysis are investigated in a magnetized quantum plasma with exchange-correlation and Bohm diffraction effects of degenerate electrons in the model. Using reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived for two dimensional propagation of ion-acoustic wave in a magnetized quantum plasma. It is found that the phase speed, amplitude and width of the nonlinear ion-acoustic wave structures are affected in the presence of exchange-correlation potential in the model. The stability analysis of the 2D ion-acoustic wave pulse is also presented. It is found that growth rate of the first and second order instabilities of 2D ion acoustic wave soliton is enhanced with the inclusion of exchange-correlation potential effect in the model.  相似文献   

16.
The dynamics of short (of the order of a few wave periods) intense optical pulses and interaction of short optical solitons in fibers are considered within the framework of the third-order nonlinear Schrodinger equation. It is shown that an initial pulse tends to one or a few short solitons plus a linear quasiperiodic wave when the third-order linear dispersion and nonlinear dispersion have parameters of the same sign. The number and parameters of the solitons depend on the magnitudes of initial pulse parameters. Interaction of short optical solitons having different amplitudes is accompanied by radiation of part of the wave field from the area of interaction, by an increase of the soliton with larger amplitude, and a decrease of the soliton with a smaller one. (c) 2000 American Institute of Physics.  相似文献   

17.
The transverse stability and the amplitude variations of soliton-like wave motions in the presence of nonlinearity, dispersion, diffraction, and dissipation in the medium are studied. The wave process is described by a quintic nonlinear evolution equation. It is demonstrated that the stability of the solution does not depend on the dissipation when the dissipation, diffraction, and dispersion are of the same order of magnitude. It depends on the sign of the ratio of the diffraction and dispersion coefficients. When the sign is positive, the soliton is stable. This result coincides with the stability condition for a nonlinear modulation wave. For the case of strong dissipation, an expression describing the soliton amplitude is obtained and the dissipation is shown to have no effect on the soliton stability.  相似文献   

18.
A theoretical investigation on amplification of electrostatic ion acoustic wave in magnetically confined plasma has been presented in this paper. This investigation considers nonlinear wave–particle interaction process, called plasma maser effect, in presence of drift wave turbulence supported by magnetically confined inhomogeneous plasma. The role of associated nonlinear dissipative force in this effect in a confined plasma has been analyzed. The nonlinear force, which arises as a result of resonant interaction between electrons and modulated fields, is shown to drive the instability. Using the ion fluid equation and the ion equation of continuity, the nonlinear dispersion relation of a test ion acoustic wave has been derived, and the growth rate of ion acoustic wave in presence of low frequency drift wave turbulence has been estimated using Helimak data.  相似文献   

19.
A system of equations for charged dislocations, where the quadratic nonlinear terms are taken into account, is derived using the variational principle. This system describes the propagation of ultrasonic (US) waves in crystals with charged dislocations. From the linearized system of equations a linear dispersion equation is derived. Formulas for the phase linear velocity of the wave and the absorption coefficient are obtained, which show essential influence of charged dislocations and electrical properties of media on the mentioned quantities. For a nonlinear US wave an equation for the amplitude of the first harmonic is derived and, as a consequence, expressions are obtained for the nonlinear velocity of the US wave, for the attenuation of the first harmonic's amplitude, and for phase variation.  相似文献   

20.
菅永军  鄂学全  张杰  孟俊敏 《中国物理》2004,13(12):2013-2020
Singular perturbation theory of two-time-scale expansions was developed in inviscid fluids to investigate patternforming, structure of the single surface standing wave, and its evolution with time in a circular cylindrical vessel subject to a vertical oscillation. A nonlinear slowly varying complex amplitude equation, which involves a cubic nonlinear term,an external excitation and the influence of surface tension, was derived from the potential flow equation. Surface tensionwas introduced by the boundary condition of the free surface in an ideal and incompressible fluid. The results show that when forced frequency is low, the effect of surface tension on the mode selection of surface waves is not important.However, when the forced frequency is high, the surface tension cannot be neglected. This manifests that the function of surface tension is to cause the free surface to return to its equilibrium configuration. In addition, the effect of surface tension seems to make the theoretical results much closer to experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号