首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nanofluid and porous medium together are able to fulfill the requirement of high cooling rate in many engineering problems. So, here the impact of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium is examined. Moreover, the thermal radiation and viscous dissipation effects are considered. The problem governing partial differential equations are converted into self-similar coupled ordinary differential equations and those are numerically solved by the shooting method. The computed results can reveal many vital findings of practical importance. Firstly, dual solutions exist for decelerating unsteady flow and for accelerating unsteady and steady flows, the solution is unique. The presence of nanoparticles affects the existence of dual solution in decelerating unsteady flow only when the medium of the flow is a porous medium. But different shapes of nanoparticles are not disturbing the dual solution existence range, though it has a considerable impact on thermal conductivity of the mixture. Different shapes of nanoparticles act differently to enhance the heat transfer characteristics of the base fluid, i.e., the water here. On the other hand, the existence range of dual solutions becomes wider for a larger permeability parameter related to the porous medium. Regarding the cooling rate of the heated surface, it rises with the permeability parameter, shape factor (related to various shapes of Cu-nanoparticles), and radiation parameter. The surface drag force becomes stronger with the permeability parameter. Also, with growing values of nanoparticle volume fraction, the boundary layer thickness (BLT) increases and the thermal BLT becomes thicker with larger values of shape factor. For decelerating unsteady flow, the nanofluid velocity rises with permeability parameter in the case of upper branch solution and an opposite trend for the lower branch is witnessed. The thermal BLT is thicker with radiation parameter. Due to the existence of dual solutions, a linear stability analysis is made and it is concluded that the upper branch and unique solutions are stable solutions.  相似文献   

2.
3.
This paper investigate the effect of slip boundary condition, thermal radiation, heat source, Dufour number,chemical reaction and viscous dissipation on heat and mass transfer of unsteady free convective MHD flow of a viscous fluid past through a vertical plate embedded in a porous media. Numerical results are obtained for solving the nonlinear governing momentum, energy and concentration equations with slip boundary condition, ramped wall temperature and ramped wall concentration on the surface of the vertical plate. The influence of emerging parameters on velocity,temperature and concentration fields are shown graphically.  相似文献   

4.

Abstract  

Porous pressure-sensitive paint (PSP) is employed as a visualization technique for unsteady flow features on a low-pressure turbine blade. Recognizing that the measurement of high-frequency pressure fluctuations in unsteady flows—especially in turbomachinery—has proven to be difficult, recent advancements in the development of porous PSP have enabled the high-resolution measurement of pressure fields with frequency content of at least 20 kHz. In this work, PSP is applied to an L1A low-pressure turbine blade section (Re = 20,000 based on axial chord) to visualize the surface dynamics of a vortex generator jet (VGJ) pulsed at 10.6 Hz with nitrogen gas. Intensity-based, time-resolved PSP measurements reveal the development and the surface structure of the VGJ as well as the spanwise variation in the blowing profile.  相似文献   

5.
T. Hayat  M. Sajid 《Physics letters. A》2008,372(10):1639-1644
Analytic solution for unsteady magnetohydrodynamic (MHD) flow is constructed in a rotating non-Newtonian fluid through a porous medium. Constitutive equations for a Maxwell fluid have been taken into consideration. The hydromagnetic flow in the uniformly rotating fluid is generated by a suddenly moved infinite plate in its own plane. Analytic solution of the governing flow problem is obtained by means of the Fourier sine transform. It is shown that the obtained solution satisfies both the associate partial differential equation and the initial and boundary conditions. The solution for a Navier-Stokes fluid is recovered if λ→0. The steady state solution is also obtained for t→∞.  相似文献   

6.
The unsteady magnetohydrodynamic flow of an electrically conducting viscous incompressible third grade fluid bounded by an infinite porous plate is studied with the Hall effect. An external uniform magnetic field is applied perpendicular to the plate and the fluid motion is subjected to a uniform suction and injection. Similarity transformations are employed to reduce the non-linear equations governing the flow under discussion to two ordinary differential equations (with and without dispersion terms). Using the finite difference scheme, numerical solutions represented by graphs with reference to the various involved parameters of interest are discussed and appropriate conclusions are drawn.  相似文献   

7.
As an example of a coupled gas-phase diffusion flame with porous media flow, a candle burning model with a porous wick is offered in this paper. The porous media analysis includes capillarity-induced liquid flow, liquid vaporisation, vapour motion and re-condensation and multi-phase heat transfer. Coupling with the gas phase flame is through the conservation of mass, momentum and energy at the wick surface. The steady state solutions obtained not only yield the flame structure but also the detailed flow pattern and saturation distributions inside the wick. One of the novel features of the present model is the capability to address the self-trimming phenomena of candle burning. The self-trimming wick length and the associated flame characteristics have been computed as a function of gravity level, wick permeability and wick diameter.  相似文献   

8.
The paper studies the effects of chemical reactions on unsteady MHD free convection and mass transfer flow of a viscous, incompressible, electrically-conducting fluid past an infinite hot vertical porous plate embedded in porous medium. Heat generation/absorption and viscous dissipation effects are included. The temperature of the plate is assumed to be spanwise cosinusoidally fluctuating with time. The governing equations are solved by perturbation technique. Numerical evaluation of the analytical results is performed. Graphical results for transient velocity and transient temperature profiles and tabulated results for skin-friction coefficient and Nusselt number are presented and discussed.  相似文献   

9.
An analysis is performed to study the influence of local thermal non-equilibrium (LTNE) on unsteady MHD laminar boundary layer flow of viscous, incompressible fluid over a vertical stretching plate embedded in a sparsely packed porous medium in the presence of heat generation/absorption. The flow in the porous medium is governed by Brinkman-Forchheimer extended Darcy model. A uniform heat source or sink is presented in the solid phase. By applying similarity analysis, the governing partial differential equations are transformed into a set of time dependent non-linear coupled ordinary differential equations and they are solved numerically by Runge-Kutta Fehlberg method along with shooting technique. The obtained results are displayed graphically to illustrate the influence of different physical parameters on the velocity, temperature profile and heat transfer rate for both fluid and solid phases. Moreover, the numerical results obtained in this study are compared with the existing literature in the case of LTE and found that they are in good agreement.  相似文献   

10.
S. Nadeem  M. Awais 《Physics letters. A》2008,372(30):4965-4972
In the present study, we have analyzed the effects of variable viscosity, variable thermocapillarity on the flow and heat transfer in a thin film on a horizontal porous shrinking sheet through a porous medium. The unsteady boundary layer equations for momentum and thermal energy are simplified by using similarity transformations. The resulted, coupled nonlinear differential equations are solved by homotopy analysis method. The results are presented graphically to interpret various physical parameters appearing in the problem.  相似文献   

11.
王飞  彭岚  张全壮  刘佳 《物理学报》2015,64(14):140202-140202
双向温差驱动下的Marangoni-热毛细对流在许多工程技术领域具有重要作用, 但是, 已有的大部分研究集中于单向温差作用下的流动. 因此, 采用数值模拟的方法研究了水平温差对双向温差驱动下的环形浅液池内Marangoni-热毛细对流的影响. 在一个给定的顶部换热条件下, 确定了不同水平温差作用下流动由轴对称稳态流动向三维非稳态流动转变的临界底部热流密度. 结果表明, 水平温差使得Marangoni-热毛细对流不稳定; 随着水平温差的持续增强, 稳态流动转变为一种规律的振荡流动, 最终变得混乱; 发现两种新的状态演化过程; 确定了水平温差和垂直温差在共同驱动流体运动时各自发挥的作用; 随着水平温差的增强, 最初出现在中间区域的最高表面温度不断向热壁移动, 在此过程中, 内壁附近的流动增强, 而外壁附近的流动减弱.  相似文献   

12.
进气畸变对压气机稳定性的影响   总被引:3,自引:0,他引:3  
在低速大尺寸单级压气机实验器上,实验研究了动态进气畸变对压气机稳定边界的影响。并采取在静子叶片表面埋入微型压力传感器的方法,分析了压气机流场的动态压力特性。实验结果表明,动态总压畸变的旋转频率和旋转方向对压气机稳定性有很大的影响,当畸变相对转速n在0~+0.5之间时,压气机失速推迟;分析动态压力的频谱特性后知道,在压气机失速前一般存在与失速相关的压力扰动,动态总压畸变影响这种压力扰动,从而影响压气机的不稳定流动状态。  相似文献   

13.
This paper investigates the benefit of unsteady blowing actuation over a two-dimensional (2D) airfoil specially designed for wind turbine applications. The experiments were carried out in Syracuse University’s anechoic wind tunnel, both with and without large-scale unsteadiness in the free stream generated by a 2D cylinder upstream of the airfoil. By analyzing both surface pressure through wavelet analysis and Particle Image Velocimetry (PIV) velocity field measurements, we found a drastic change in the flow physics and the aerodynamic loading on the airfoil between steady and unsteady free-stream conditions. When there was no large-scale unsteadiness introduced in the flow, under open-loop flow control conditions with unsteady blowing, the leading-edge separation was delayed and the maximum lift coefficient was increased. For the cases where large-scale unsteadiness was introduced into the flow, the experiments showed that both open-loop and closed-loop control cases were capable of reducing load fluctuations by a measurable amount. However, only the closed-loop control case that utilized dynamic surface pressure information from the airfoil suction side near the leading edge was capable of consistently mitigating the fluctuating load.  相似文献   

14.
This paper reports on an experimental investigation of large-scale flowfield instabilities in a pump rotor and the process of noise generation by these instabilities. Measurements of the fluctuating components of velocity and surface pressure were made with hot-wire probes and surface mounted pressure transducers on a seven bladed back swept centrifugal water pump impeller operating with air as the working fluid. The impeller was operated without a volute or scroll diffuser, thereby eliminating any sound generation from pressure fluctuations on the volute cutoff. Thus the study focused on flow field and noise components other than the blade passage frequency (and its harmonics). The primary goal of the study was to provide fundamental information on the unsteady flow processes, particularly those associated with the noise generation in the device. It was further anticipated that detailed flow measurements would be useful for the validation of future computational simulations.The measured data at the discharge show a jet-wake type of flow pattern which results in a strong vorticity field. The flow with high velocity found on the pressure side of the impeller tends to move to the low-pressure region present at the suction side of the passage as a form of roll-up around the blade trailing edge. This motion causes an unsteady flow separation at the suction side of the blade and consequently disturbs the flow in the adjacent passage. By interacting with the impeller blades near the trailing edges, this instability flow causes a periodic pressure fluctuation on the blade surface and generates noise by a trailing edge generation mechanism. The spectrum of surface pressure measured at the trailing edge of each blade reveals a cluster of peaks which were identified with azimuthal mode numbers. The correlation between the acoustic farfield pressure and the surface pressure on the impeller blade has proven that the azimuthal modes synchronized with the number of impeller blades generate noise much more efficiently than the other modes. The paper also clarifies the correlation between unsteady flowfield measurements, in both impeller and laboratory co-ordinates, with the radiated noise properties. Thus some light is shed on the noise generation mechanisms of this particular device.  相似文献   

15.
无导叶对转涡轮三维流场的非定常数值模拟   总被引:2,自引:1,他引:1  
为了揭示1 1/2(无低压导叶)对转涡轮流场的非定常流动特性,运用全三维粘性流场计算程序对某1 1/2对转涡轮模型级的流场进行了非定常数值模拟。结果表明,非定常计算可以获得比定常计算更为丰富的流场信息;非定常效应具有逐级累积的趋势;高压导叶压力面叶表静压展向分布比吸力面均匀;高低压动叶压力面和吸力面叶表静压的展向分布不均匀;高压动叶的负荷随叶高的增加而增大;高低压动叶出口气流角沿整个叶展均较大地偏离轴向,说明高低压涡轮的功负荷较高,在出功量上达到了设计目标。  相似文献   

16.
The unsteady free convective MHDflow of a polar fluid through a porous medium with variable permeability in the presence of heat source bounded by an infinite horizontal porous plate in slip flow regime is analyzed. The transformed nondimensional equations are solved by a perturbation method. The obtained results are presented graphically to illustrate the influence of different physical parameters on the velocity profile, angular velocity profile, temperature profile, and concentration profile. Further the effect of variable permeability parameter on the velocity profile is investigated. Some special cases with their physical significance are discussed and compared with the existing published work.  相似文献   

17.
使用多孔蜗舌的贯流风机   总被引:1,自引:0,他引:1  
将贯流风机的蜗舌替代为多孔板与容腔组合的结构,定性地研究其控制气动噪声的可行性。通过对气动特性和辐射声信号的实验测量,结合内部流场的非稳态雷诺平均数值模拟,分析了这种蜗舌改造对贯流风机的整体特性和内部流动特征的影响,结果表明多孔蜗舌对贯流风机的压力-流量曲线作用并不明显,但对风机的噪声有着重要的影响,改变蜗舌迎风面的穿孔率可以有效地控制贯流风机的噪声。  相似文献   

18.
In this paper we propose a new method which might be useful to investigate the flow fields close to vaulted walls with spatial and temporal resolution. This kind of flow visualization is important in the field of biofluid mechanics, since a close relationship is assumed between flow and biological phenomena. This new method is non-invasive, and is also applicable for unsteady flows. It has been used to investigate the steady and the unsteady laminar flow in a rectangular duct, as well as the steady, laminar flow in two different U-shaped ducts, both with a backward facing step, one having a rectangular cross-section, the other a nearly elliptical cross-section. The results concurred well with analytical or numerical solutions.  相似文献   

19.
The Brinkman equations of fluid motion are a model of flows in a porous medium. We develop the exact solution of the Brinkman equations for three-dimensional incompressible flow driven by regularized forces. Two different approaches to the regularization are discussed and compared on test problems. The regularized Brinkman model is also applied to the unsteady Stokes equation for oscillatory flows since the latter leads to the Brinkman equations with complex permeability parameter. We provide validation studies of the method based on the flow and drag of a solid sphere translating in a Brinkman medium and the flow inside a cylindrical channel of circular cross-section. We present a numerical example of a swimming organism in a Brinkman flow which shows that the maximum swimming speed is obtained with a small but non-zero value of the porosity. We also demonstrate that unsteady Stokes flows with oscillatory forcing fall within the same framework and are computed with the same method by applying it to the motion of the oscillating feeding appendage of a copepod.  相似文献   

20.
Two-dimensional unsteady gas flows in porous media with heterogeneous-combustion centers are investigated under forced filtration and free convection. With the use of numerical methods, it is shown that complex gas flows including vortex ones can arise under the combustion of solid porous media. In the case of forced filtration, the gas tends to flow around the heated portion of an object preferring to flow along cold regions. Under natural convection, the vortex gas flows, which can exist for a reasonably long time and strongly affect the oxidizer inflow into the reaction zone, arise at the initial moment of the process in the combustion zone and in its vicinities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号