首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A product and time-resolved kinetic study on the reactivity of tertiary arylcarbinyloxyl radicals bearing alpha-cyclopropyl and alpha-cyclobutyl groups has been carried out. Both the 1-cyclopropyl-1-phenylethoxyl (1.) and alpha,alpha-dicyclopropylphenylmethoxyl (2.) radicals undergo beta-scission to give cyclopropyl phenyl ketone as the major or exclusive product with rate constants higher than that measured for the cumyloxyl radical. It is proposed that in the transition state for beta-scission of 1. and 2., formation of the C=O double bond is assisted by overlap with the C-C bonding orbitals of the cyclopropane ring. With tertiary arylcarbinyloxyl radicals bearing alpha-cyclobutyl groups such as the 1-cyclobutyl-1-phenylethoxyl (4.) and 1-cyclobutyl-1-phenylpropoxyl (5.) radicals, the fragmentation regioselectivity is essentially governed by the stability of the radical formed by beta-scission. Accordingly, 4. undergoes exclusive C-cyclobutyl bond cleavage to give acetophenone, whereas with 5., competition between C-cyclobutyl and C-ethyl bond cleavage, leading to propiophenone and cyclobutylphenyl ketone in a 2:1 ratio, is observed.  相似文献   

2.
cis-[RuIV(bpy)2(py)(O)]2+ oxidizes cumene (2-phenylpropane) in acetonitrile solution primarily to cumyl alcohol (2-phenyl-2-propanol), alpha-methylstyrene, and acetophenone. Contrary to a prior report, the rate of the reaction is not accelerated by added nucleophiles. There is thus no evidence for the hydride transfer mechanism originally proposed. Instead, the results are consistent with a mechanism of initial hydrogen atom transfer from cumene to the ruthenium oxo group. This is indicated by the correlation of rate with C-H bond strength and by the various products observed. The formation of acetophenone, with one carbon less than cumene, is suggested to occur via a multistep pathway involving decarbonylation of the acyl radical from 2-phenylpropanal. An alternative mechanism involving beta-scission of cumyloxyl radical is deemed unlikely because of the difficulty of generating alkoxyl radicals under anaerobic conditions and the lack of rearranged products in the oxidation of triphenylmethane by cis-[RuIV(bpy)2(py)(O)]2+.  相似文献   

3.
A series of p-nitrobenzenesulfenate esters was used in laser flash photolysis (LFP) studies to generate alkoxyl radicals that fragmented to give the (2,2-diphenylcyclopropyl)methyl radical. Rate constants for the beta-scission reactions increased as a function of the carbonyl compound produced in the fragmentation reaction in the order CH2O < MeCHO < Me2CO < PhCHO < Ph2CO and increased with increasing solvent polarity. For alkoxyl radicals that fragment to produce benzaldehyde and benzophenone, the beta-scission reactions are faster than 1,5-hydrogen atom abstractions when the incipient carbon radical is as stable as a secondary alkyl radical, and this entry to carbon radicals can be used in LFP kinetic studies.  相似文献   

4.
[reaction: see text] A product and time-resolved kinetic study of the effect of ring substitution on the reactivity of 1,1-diarylalkoxyl radicals has been carried out. The radicals undergo an O-neophyl shift to give the isomeric 1-aryl-1-aryloxyalkyl radicals from which the corresponding aromatic ketones are formed. The rearrangement rate constants are influenced by ring substitution, increasing in the presence of electron-withdrawing substituents and decreasing in the presence of electron-donating ones. From the results of product and kinetic studies, the following migratory aptitudes have been obtained: 4-trifluoromethylphenyl > phenyl approximately = 4-methylphenyl > 4-methoxyphenyl. Excellent Hammett-type correlations between the sigma+ substituent constants and both the visible absorption band maxima and the rearrangement rate constants have been obtained. The experimental results indicate that the rearrangement is governed by electronic effects in the starting 1,1-diarylalkoxyl radicals, whereas the stability of the rearranged carbon-centered radical plays a minor role, in line with a reactant-like transition state, strongly supporting the hypothesis that the O-neophyl rearrangement of 1,1-diarylalkoxyl radicals proceeds through a concerted mechanism.  相似文献   

5.
Resonance-stabilized radicals containing indane, indene, and fluorenyl moieties exhibit attenuated reactivity toward oxygen. Rate constants of approximately 10(5) M(-1) s(-1) were observed for the most stabilized radicals. The dependence of k(OX) (rate constant for radical trapping by oxygen) on the corresponding bond dissociation energies revealed that stereoelectronic effects are more important than steric effects in determining the low radical reactivity with oxygen. Scavenging by the nitroxide TEMPO was also examined, and revealed that in this case steric effects are more important than in the case of oxygen. The rate constants for the hydrogen abstraction by cumyloxyl and tert-butoxyl radicals generated thermally and photochemically have been determined in benzene, and were in the range of ca. (1-13) x 10(6) M(-1) s(-1), showing that benzylic stabilization has a modest effect on substrate reactivity as a hydrogen donor toward alkoxyl radicals.  相似文献   

6.
High-level quantum chemistry calculations have been carried out to investigate beta-scission reactions of alkoxyl radicals located at the alpha-carbon of a peptide backbone. This type of alkoxyl radical may undergo three possible beta-scission reactions, namely C-C beta-scission of the backbone, C-N beta-scission of the backbone, and C-R beta-scission of the side chain. We find that the rates for the C-C beta-scission reactions are all very fast, with rate constants of the order 10(12) s(-1) that are essentially independent of the side chain. The C-N beta-scission reactions are all slow, with rate constants that range from 10(-0.7) to 10(-4.5) s(-1). The rates of the C-R beta-scission reactions depend on the side chain and range from moderately fast (10(7) s(-1)) to very fast (10(12) s(-1)). The rates of the C-R beta-scission reactions correlate well with the relative stabilities of the resultant side-chain product radicals (*R), as reflected in calculated radical stabilization energies (RSEs). The order of stabilities for the side-chain fragment radicals for the natural amino acids is found to be Ala < Glu < Gln approximately Leu approximately Met approximately Lys approximately Arg < Asp approximately Ile approximately Asn approximately Val < Ser approximately Thr approximately Cys < Phe approximately Tyr approximately His approximately Trp. We predict that for side-chain C-R beta-scission reactions to effectively compete with the backbone C-C beta-scission reactions, the side-chain fragment radicals would generally need an RSE greater than approximately 30 kJ mol(-1). Thus, the residues that may lead to competitive side-chain beta-scission reactions are Ser, Thr, Cys, Phe, Tyr, His, and Trp.  相似文献   

7.
Hybrid DFT calculations of the potential energy surface (PES) relative to the O-neophyl rearrangement of a series of ring-substituted 1,1-diarylalkoxyl radicals have been carried out at the UB3LYP/6-31G(d) level of theory. On the basis of the computational data, the rearrangement can be described as a consecutive reaction of the type a <--/--> b --> c (see above graphic), and the steady-state approximation could be applied in all cases to the intermediate b. The first-order rearrangement rate constants [kobs = k1k2/(k-1 + k2)] were thus obtained from the computed activation free-energies and were compared with the experimental rate constants measured previously in MeCN solution by laser flash photolysis. An excellent agreement is observed along the two series, which strongly supports the hypothesis that the O-neophyl rearrangement of 1,1-diarylalkoxyl radicals proceeds through the formation of the reactive 1-oxaspiro [2,5]octadienyl radical intermediate. This is in contrast to previous hypotheses that involve either a long-lived intermediate or the absence of this intermediate along the reaction path. The calculated rearrangement free-energies decrease upon going from the methoxy-substituted radical (Delta G degrees = -16.4 kcal x mol-1) to the nitro-substituted one (Delta G degrees = -21.8 kcal x mol-1), which follows a trend that is similar to the one observed for the CAr-O bond dissociation enthalpies (BDEs) of ring-substituted anisoles. This evidence indicates that in the O-neophyl rearrangement the effect of ring substituents on the strength of the newly formed CAr-O bond plays an important role.  相似文献   

8.
[reaction: see text] The absolute rate constants for beta-scission of a series of benzocycloalken-1-oxyl radicals and of the 2-(4-methylphenyl)-2-butoxyl radical have been measured directly by laser flash photolysis. The benzocycloalken-1-oxyl radicals undergo ring opening with rates which parallel the ring strain of the corresponding cycloalkanes. In the 1-X-indan-1-oxyl radical series, ring opening is observed when X = H, Me, whereas exclusive C-X bond cleavage occurs when X = Et. The factors governing the fragmentation regioselectivity are discussed.  相似文献   

9.
A kinetic study of the hydrogen atom abstraction reactions from propanal (PA) and 2,2-dimethylpropanal (DMPA) by the cumyloxyl radical (CumO?) has been carried out in different solvents (benzene, PhCl, MeCN, t-BuOH, MeOH, and TFE). The corresponding reactions of the benzyloxyl radical (BnO?) have been studied in MeCN. The reaction of CumO? with 1,4-cyclohexadiene (CHD) also has been investigated in TFE solution. With CHD a 3-fold increase in rate constant (k(H)) has been observed on going from benzene, PhCl, and MeCN to TFE. This represents the first observation of a sizable kinetic solvent effect for hydrogen atom abstraction reactions from hydrocarbons by alkoxyl radicals and indicates that strong HBD solvents influence the hydrogen abstraction reactivity of CumO?. With PA and DMPA a significant decrease in k(H) has been observed on going from benzene and PhCl to MeOH and TFE, indicative of hydrogen-bond interactions between the carbonyl lone pair and the solvent in the transition state. The similar k(H) values observed for the reactions of the aldehydes in MeOH and TFE point toward differential hydrogen bond interactions of the latter solvent with the substrate and the radical in the transition state. The small reactivity ratios observed for the reactions of CumO? and BnO? with PA and DMPA (k(H)(BnO?)/k(H)(CumO?) = 1.2 and 1.6, respectively) indicate that with these substrates alkoxyl radical sterics play a minor role.  相似文献   

10.
The (*)OH-induced oxidation of 1,3,5-trithiacyclohexane (1) in aqueous solution was studied by means of pulse radiolysis with optical and conductivity detection. This oxidation leads, via a short-lived (*)OH radical adduct (<1 micros), to the radical cation 1(*+) showing a broad absorption with lambda(max) equal to 610 nm. A defined pathway of the decay of 1(*+) is proton elimination. It occurs with k = (2.2 +/- 0.2) x 10(4) s(-1) and yields the cyclic C-centered radical 1(-H)(*). The latter radical decays via ring opening (beta-scission) with an estimated rate constant of about 10(5) s(-1). A distinct, immediate product (formed with the same rate constant) is characterized by a narrow absorption band with lambda(max) = 310 nm and is attributed to the presence of a dithioester function. The formation of the 310 nm absorption can be suppressed in the presence of oxygen, the rationale for this being a reaction of the C-centered cyclic radical 1(-H)(*) with O(2). The disappearance of the 310 nm band (with a rate constant of 900 s(-1)) is associated with the hydrolysis of the dithioester functionality. A further aspect of this study deals with the reaction of H(*) atoms with 1 which yields a strongly absorbing, three-electron-bonded 2sigma/1sigma* radical cation [1(S therefore S)-H](+) (lambda(max) = 400 nm). Its formation is based on an addition of H(*) to one of the sulfur atoms, followed by beta-scission, intramolecular sulfur-sulfur coupling (constituting a ring contraction), and further stabilization of the S therefore S bond thus formed by protonation. [1(S therefore S)-H](+) decays with a first-order rate constant of about 10(4) s(-1). Its formation can be suppressed by the addition of oxygen which scavenges the H(*) atoms prior to their reaction with 1. Complementary time-resolved conductivity experiments have provided information on the quantification of the 1(*+) radical cation yield, the cationic longer-lived follow-up species, extinction coefficients, and kinetics concerning deprotonation processes as well as further reaction steps after hydrolysis of the transient dithioesters. The results are also discussed in the light of previous photochemical studies.  相似文献   

11.
A time-resolved kinetic study of the reactions of ring-substituted cumyloxyl radicals (4-X-CumO(?): X = OMe, t-Bu, Me, Cl, CF(3)) with methylferrocenes (Me(n)Fc: n = 2, 8, 10) has been carried out in acetonitrile solution. Evidence for an electron transfer (ET) process has been obtained for all radicals and an increase in reactivity has been observed on decreasing the oxidation potential of the ferrocene donor and on going from electron-releasing to electron-withdrawing ring substituents. Computations predict the formation of strongly bound π-stacked 4-X-CumO(?)/DcMFc complexes, characterized by intracomplex π-π distances around 4 ?. These findings point toward a (nonbonded) inner-sphere ET mechanism for the reactions of the 4-X-CumO(?)/Me(n)Fc couples.  相似文献   

12.
The thermolysis of a series of tert-alkyl peroxypivalates 1 in cumene has been investigated by using the nitroxide radical-trapping technique. tert-Alkoxyl radicals generated from the thermolysis underwent the unimolecular reactions, beta-scission, and 1,5-H shift, competing with hydrogen abstraction from cumene. The absolute rate constants for beta-scission of tert-alkoxyl radicals, which vary over 4 orders of magnitude, indicate the vastly different behavior of alkoxyl radicals. However, the radical generation efficiencies of 1 varied only slightly, from 53 (R = Me) to 63% (R = Bu(t)()), supporting a mechanism involving concerted two-bond scission within the solvent cage to generate the tert-butyl radical, CO(2), and an alkoxyl radical. The thermolysis rate constants of tert-alkyl peroxypivalates 1 were influenced by both inductive and steric effects [Taft-Ingold equation, log(rel k(d)) = (0.97 +/- 0. 14)Sigmasigma - (0.31 +/- 0.04)SigmaE(s)(c), was obtained].  相似文献   

13.
The C-C beta-scission reactions of 1-alkylcycloalkoxyl radicals, generated photochemically by visible light irradiation of CH2Cl2 solutions containing the parent 1-alkylcycloalkanols, (diacetoxy)iodobenzene (DIB), and I2, have been investigated through the analysis of the reaction products. The 1-alkylcycloalkoxyl radicals undergo competition between ring opening and C-alkyl bond cleavage as a function of ring size and of the nature of the alkyl substituent. With the 1-propylcycloheptoxyl, 1-propylcyclooctoxyl,and 1-phenylcyclooctoxyl radicals, formation of products deriving from an intramolecular 1,5-hydrogen atom abstraction reaction from the cycloalkane ring has also been observed. The results are discussed in terms of release of ring strain associated to ring opening, stability of the alkyl radical formed by C-alkyl cleavage, and with cycloheptoxyl and cyclooctoxyl radicals, also in terms of the possibility of achieving a favorable geometry for intramolecular hydrogen atom abstraction.  相似文献   

14.
The rate constants for the beta-elimination of tosyl radical (Ts*) from a series of carbon-centered radicals have been determined by using the radical clock methodology. Depending on the substituents R in Ts-CH(2)-CH*R radicals, the rate constants at 293 K vary by more than 2 orders of magnitude in the range of 10(3)-10(6) s(-1). The lowest values were found for the 2-naphthyl and carbamoyl substituents, whereas the benzyl substituent is located at the other extremity. The effect of the substituent upon the stabilization of the starting radical exerts a predominant influence in this reaction in decreasing the rate of fragmentation.  相似文献   

15.
A kinetic study of the one electron oxidation of substituted ferrocenes (FcX: X = H, COPh, COMe, CO(2)Et, CONH(2), CH(2)OH, Et, and Me(2)) by a series of N-oxyl radicals (succinimide-N-oxyl radical (SINO), maleimide-N-oxyl radical (MINO), 3-quinazolin-4-one-N-oxyl radical (QONO) and 3-benzotriazin-4-one-N-oxyl radical (BONO)), has been carried out in CH(3)CN. N-oxyl radicals were produced by hydrogen abstraction from the corresponding N-hydroxy derivatives by the cumyloxyl radical. With all systems, the rate constants exhibited a satisfactory fit to the Marcus equation allowing us to determine self-exchange reorganization energy values (λ(NO˙/NO(-))) which have been compared with those previously determined for the PINO/PINO(-) and BTNO/BTNO(-) couples. Even small modification of the structure of the N-oxyl radicals lead to significant variation of the λ(NO˙/NO(-)) values. The λ(NO˙/NO(-)) values increase in the order BONO < BTNO < QONO < PINO < SINO < MINO which do not parallel the order of the oxidation potentials. The higher λ(NO˙/NO(-)) values found for the MINO and SINO radicals might be in accordance with a lower degree of spin delocalization in the radicals MINO and SINO and charge delocalization in the anions MINO(-) and SINO(-) due to the absence of an aromatic ring in their structure.  相似文献   

16.
The photooxidation by ceric ammonium nitrate (CAN) of several aryl and naphthylcarbinols has been studied by means of ESR spectroscopy. For all the investigated arylcarbinols, but not for the naphthyl derivatives, it has been possible to detect radical intermediates deriving from the parent alkoxyl radicals. In particular, in the photooxidation of 1,1-diphenylethanol, a bridged-radical intermediate has been detected. The assignment has been validated through experiments with two different labeled compounds: the 1,1-[2', 3', 4', 5', 6', 2", 3", 4", 5", 6"-2H10]diphenylethanol and the 1,1-diphenyl[2, 2, 2-2H3]ethanol. A similar bridged radical has been found to be formed in the photooxidation of triphenylmethanol, while, for the 1,1-diphenylpropanol, the only detectable species has been the ethyl radical deriving from a competitive beta-scission process. Finally, for the 2-phenylpropan-2-ol (cumyl alcohol), two radical species have been identified: the methyl, deriving from the beta-scission process, and the cyanomethylene, deriving from H-abstraction of the cumyloxyl radical from the solvent. A kinetic study on the competition of the two processes has also been conducted and the parameters of the Arrhenius equation for the latter process have been estimated.  相似文献   

17.
Absorption spectra of some arenechromiumtricarbonyl derivatives have been studied. The linear dependence of the extinction coefficient of the longer wavelength absorption band on σp+ constants of substituents in a benzene ring has been established and it has been shown that a longer wavelength band is a band of intramolecular charge transfer from the central chromium atom to π-bonded arene.  相似文献   

18.
Horner JH  Choi SY  Newcomb M 《Organic letters》2000,2(21):3369-3372
4-Nitrobenzenesulfenate esters were used as precursors for the generation of alkoxyl radicals under laser flash photolysis conditions. The esters were efficiently cleaved using the Nd:YAG third harmonic (355 nm) to produce alkoxyl radicals and the 4-nitrobenzenethiyl radical. Rate constants for beta-scission and 1, 5-hydrogen abstraction reactions of alkoxyl radicals were measured.  相似文献   

19.
In this paper, we report the results of a laser flash photolysis study of the reactions of a range of carotenoids with acylperoxyl radicals in polar and nonpolar solvents. The results show, for the first time, that carotenoid addition radicals do not react with oxygen to form carotenoid peroxyl radicals; an observation which is of significance in relation to antioxidant/pro-oxidant properties of carotenoids. Acylperoxyl radicals, generated by photolysis of ketone precursors in oxygenated solvents, display high reactivity toward carotenoids in both polar and nonpolar solvents, but the nature of the carotenoid radicals formed is dependent on solvent polarity. In hexane, acylperoxyl radicals react with carotenoids with rate constants in the region of 10(9) M(-1) s(-1) and give rise to transient absorption changes in the visible region that are attributed to the formation of addition radicals. All of the carotenoids show bleaching in the region of ground-state absorption and, with the exception of 7,7'-dihydro-beta-carotene (77DH), no distinct absorption features due to addition radicals are observed beyond the ground state absorption region. For 77DH, the addition radical displays an absorption band that is spectrally resolved from the parent carotenoid absorption. The rate of decay of the 77DH addition radical is unaffected by oxygen in the concentration range 10(-4)-10(-2) M, suggesting that these resonance-stabilized carbon-centered radicals are not scavenged by oxygen. At low incident laser intensities, the 77DH addition radical decay kinetics are 1st order with k(1) approximately 4 x 10(3) s(-1) at room temperature. The 1st order decay is attributed to an intramolecular cyclization process, which is supported by the substantial negative entropies of activation obtained from measurements of the decay rate constants for different 77DH addition radicals as a function of temperature. No transient absorption features are observed in the red or near-infrared regions in hexane for any of the carotenoids studied. In polar solvents such as methanol, acylperoxyl radicals also react with carotenoids with rate constants in the region of 10(9) M(-1) s(-1), but give rise to transient absorption changes in both the visible and the red/near-infrared regions, where it is evident that there are two distinct species. For 77DH, the addition radical absorption around 450 nm is still evident, although its kinetic behavior differs from its behavior in hexane. For 77DH and zeta-carotene (zeta-CAR) the spectral and kinetic resolution of the various absorption bands simplifies kinetic analysis. The kinetic evidence suggests that addition radical formation precedes formation of the two near-infrared absorbing species, and that the kinetics of the addition radical decay match the kinetics of formation of the first of these species (NIR1, absorbing at shorter wavelengths). The decay of NIR1 leads to NIR2, which is attributed to the carotenoid radical cation. The solvent dielectric constant dependence of the relative amounts of NIR1 and NIR2 formed leads us to speculate that NIR1 is an ion-pair. However, an alternative assignment for NIR1 is an isomer of the radical cation. The results, in terms of the pattern of reactivity the carotenoids display and of the properties of the carotenoid radicals formed, are discussed in relation to the antioxidant/pro-oxidant properties of carotenoids.  相似文献   

20.
Autoxidation of hydrazones is a generally occurring reaction, leading mostly to the formation of alpha-azohydroperoxides. All structural kinds of hydrazones, having at least one hydrogen atom on nitrogen, are prone to autoxidation; however, there are marked differences in the rate of the reaction. Hydrazones of aliphatic ketones are 1-2 orders of magnitude more reactive than analogous derivatives of aromatic ketones. Even less reactive are the hydrazones of chalcones, which function also as efficient inhibitors of autoxidation of other hydrazones. These differences can be attributed to the reduction of the rate of the addition of oxygen to a hydrazonyl radical, which is a reversible reaction. In the case of conjugated ketones, it becomes endothermic, making this elementary step slow down and the chain termination reactions become important. Substituents influence the stability of hydrazonyl radicals and, consequently, the bond dissociation energies of the N-H bonds. In acetophenone phenylhydrazones, the substituents placed on the ring of hydrazine moiety exhibit a higher effect (Hammett rho = -2.8) than those on the ketone moiety (rho = -0.82), which denotes higher importance of the structure with spin density concentrated on nitrogen in delocalized hydrazonyl radical. Electronic effects of the substituents also affect the transition state for the abstraction of hydrogen atom by electrophilic peroxy radicals; NBO analysis display a negative charge transfer of about 0.4 eu from hydrazone to a peroxy radical in the transition state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号