首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The first international intercomparison of erythemally weighted (EW) broadband radiometers was arranged in 1995 to improve the accuracy and comparability of the measurements carried out by solar UV monitoring networks. The intercomparison was arranged at the Radiation and Nuclear Safety Authority in Helsinki, Finland, in cooperation with the University of Innsbruck and with support from the World Meteorological Organization. Altogether 20 EW meters of six different types from 16 countries were (1) tested in the laboratory by measuring the spectral and angular responsivities and (2) calibrated in solar radiation against two reference spectroradiometers. Calibration factors (CFs) for the EW meters were determined by using simultaneously measured EW solar UV spectra as a calibration reference. The CFs averaged over solar elevations higher than 35° varied from 0.87 to 1.75, with the estimated uncertainty being ±10%. As a result of this intercomparison, for the first time the calibrations of more than 100 EW radiometers around the world are possible to trace to the same origin. The present experience indicates that the accuracy of temperature-controlled EW radiometers is not significantly lower than the accuracy of spectroradiometers provided that strict quality assurance/quality control procedures are followed.  相似文献   

2.
A novel method for calibrating the absolute responsivity of solar UV spectroradiometers has been developed and tested. The method is based on calibrated filter radiometers constructed from a detector, a precision aperture, a band-pass filter and devices for temperature stabilization. The filter radiometers utilize a trap detector with very low reflectance. The filter and the detector can therefore be characterized separately. As an example the detector-based calibration is compared at 312 nm wavelength with lamp-based calibration by measuring the irradiance of a deuterium lamp with both the filter radiometer and the lamp-calibrated spectroradiometer. The agreement between the results is at the level of 1%, well within the estimated uncertainties of both methods.  相似文献   

3.
UV radiation measured on normal-to-the-sun-oriented surfaces can show significantly higher global UV irradiance values compared to measurements on horizontal receivers. The direct component is amplified by the inverse cosine of the zenith angle, but over surfaces with high local albedo this accounts for only about half of the signal rise of global irradiance. The signal rise of the diffuse component, however, is strongly related to local albedo and solar elevation, which is demonstrated by 2 years of measurements of direct, diffuse, global, reflected and global normal-to-the-sun erythemal effective UV irradiance (UVery). Global UVery signal rises, on normal-to-the-sun-oriented versus horizontal receivers, of up to 65% were measured on fresh snow and solar elevation angles below 30 degrees. An empirical expression has been deduced from the measurements relating the ratio of normal-to-the-sun versus horizontal measurements of global UVery to surface albedo and solar elevation. This allows one to calculate the maximum global UVery irradiance levels which are to be expected on normal-to-the-sun-oriented surfaces with respect to horizontal measurements or model calculations.  相似文献   

4.
Abstract— Direct measurements of the downwelling spectral irradiance in the middle UV (280–340 nm) have been made for a range of solar zenith angles (20°-70°). These measurements were made for a marine atmosphere at equatorial latitudes. We fit these data to two semi-empirical analytic representations, from which quantitative calculations of spectral irradiance in the middle UV incident at the ocean surface can be made. The formulae accommodate variation in wavelength, solar zenith angle, ozone thickness, aerosol thickness and surface albedo. Our purpose is to provide marine photobiologists and photochemists with a basis for estimating middle UV radiation levels reaching the ocean surface and the approximate changes caused by manmade alterations of the ozone layer.  相似文献   

5.
Abstract— The construction of a new type of microprobe for the measurement of scalar irradiance (integral dose rate) in the UV down to wavelengths of 250 nm is described. The microprobes were made from tapered standard optical fibers and a tip-diffuser of magnesia/silica vitroceramic. The sensing tips were ca 100 μm in diameter and had maximal deviations in the angular response of ± 15%. I present measurements of scalar irradiance at high spatial resolution within dry beach sand and suspensions of microorganisms. These two media are environments in which microorganisms are exposed to UV, either under natural (sand) or laboratory conditions (suspensions). In both cases, the space distribution of UV scalar irradiance, and thus the distribution of integral dose rates, departed significantly from that predicted by absorptive effects alone. The results underscore the importance of small-scale, in situ measurements of scalar irradiance for UV dosimetry in such scattering media.  相似文献   

6.
While erythemal irradiance as a potentially damaging effect to the skin has been extensively studied and short-term forecasts have been issued to the public to reduce detrimental immediate and long-term effects such as sunburn and skin cancer by overexposure, beneficial effects to human health such as vitamin D(3) production by UV radiation and melatonin suppression by blue visible light have attained more and more attention, though both of them have not become part of forecasting yet. Using 4years of solar radiation data measured at the mid-latitude site Lindenberg (52°N), and forecast daily maximum UV index values, an overall good correspondence has been found. The data base of solar UV radiation and illuminance has also been used to analyze effects of clouds and aerosols on the effective irradiance. Optically thick clouds can strongly modify the ratios between erythemal and vitamin D(3) effective irradiance such that direct radiative transfer modeling of the latter in future UV forecasts should be preferably used. If parameterizations of vitamin D(3) effective irradiance from erythemal irradiance are used instead, the optical cloud depth would have to be taken into account to avoid an overestimation of vitamin D(3) with parameterizations neglecting cloud optical depth. Particular emphasis for the beneficial effects has been laid in our study on low exposure. Daily doses of solar irradiation for both vitamin D(3) and melatonin suppression do not reach minimum threshold doses even with clear sky and unobstructed horizon during the winter months.  相似文献   

7.
New Entrance Optics for Solar Spectral UV Measurements   总被引:2,自引:0,他引:2  
The investigation of the impact of solar UV radiation on the biosphere requires spectral measurements of solar UV radiation of high accuracy. However, the accuracy of current measurements is limited, and this can partly be attributed to the entrance optics of the instruments used for these examinations. The angular response of spectro-radiometers measuring spectral global UV irradiance should be given by the cosine of the incidence angle. In-tercomparison campaigns have shown that deviations from this ideal cosine response lead to uncertainties in solar measurements of more than 10%. Here we present recently developed entrance optics that reduce these uncertainties to ±4% in the UV. The new entrance optics have been characterized with respect to their angular response, transmission, weather durability, fluorescence and dependence of the angular response on wavelength and polarization. Solar spectroradiometric measurements carried out with the new optics were compared with simultaneously performed measurements of a second spectroradiometer that was equipped with a conventional diffuser. The deviations of up to 12% between both systems are quantitatively explained to within 3%.  相似文献   

8.
Abstract— The amount of solar radiation intercepted by an object depends on the orientation of the object with respect to the sun and the angular distribution of the diffuse component of solar radiation, which is commonly considered to be approximately isotropic. The angular distribution of the diffuse UV, visible and near-infrared insolation was measured at several solar zenith angles between 32° and 68° under cloudless skies at Lauder, New Zealand (45S), and shown to be anisotropic. The diffuse solar UV radiation increases markedly with solar elevation and is a large proportion of the total UV irradiance. The diffuse visible light and infrared radiation are small components of the total irradiance and almost independent of solar elevation. The angular distribution of erythemal UV radiation was tabulated and is available on request.  相似文献   

9.
Ultraviolet (UV) radiation affects human life and UV exposure is a significant everyday factor that individuals must be aware of to ensure minimal damaging biological effects to themselves. UV exposure is affected by many complex factors. Albedo is one factor, involving reflection from flat surfaces. Albedo is defined as the ratio of reflected (upwelling) irradiance to incident (downwelling) irradiance and is generally accepted only for horizontal surfaces. Incident irradiance on a non horizontal surface from a variety of incident angles may cause the reflectivity to change. Assumptions about the reflectivity of a vertical surface are frequently made for a variety of purposes but are rarely quantified. As urban structures are dominated by vertical surfaces, using albedo to estimate influence on UV exposure is limiting when incident (downwelling) irradiance is not normal to the surface. Changes to the incident angle are affected by the solar zenith angle, surface position and orientation and surface type. A new characteristic describing reflection from a surface has been used in this research. The ratio of reflected irradiance (from any surface position of vertical, horizontal or inclined) to global (or downwelling) irradiance (RRG) has been calculated for a variety of metal building surfaces in winter time in the southern hemisphere for both the UV and visible radiation spectrum, with special attention to RRG in the UV spectrum. The results show that the RRG due to a vertical surface can exceed the RRG due to a horizontal surface, at smaller solar zenith angles as well as large solar zenith angles. The RRG shows variability in reflective capacities of surface according to the above mentioned factors and present a more realistic influence on UV exposure than albedo for future investigations. Errors in measuring the RRG at large solar zenith angles are explored, which equally highlights the errors in albedo measurement at large solar zenith angles.  相似文献   

10.
Monitoring ambient solar UVR levels provides information on how much there is in both real time and historically. Quality assurance of ambient measurements of solar UVR is critical to ensuring accuracy and stability and this can be achieved by regular intercomparisons of spectral measurement systems with those of other organizations. In October and November of 2013 a solar UVR spectroradiometer from Public Health England (PHE) was brought to Melbourne for a campaign of intercomparisons with a new Bentham spectrometer of Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) and one at the Australian Bureau of Meteorology (BOM), supported by New Zealand's National Institute for Water and Atmosphere (NIWA). Given all three spectroradiometers have calibrations that are traceable to various national standards, the intercomparison provides a chance to determine measurement uncertainties and traceability that support UV measurement networks in Australia, New Zealand and the UK. UV Index measurements from all three systems were compared and ratios determined for clear sky conditions when the scans from each instrument were within 2 min of each other. While wavelengths below 305 nm showed substantial differences between the PHE unit and the two other systems, overall the intercomparison results were encouraging, with mean differences in measured UV Index between the BOM/NIWA and those of PHE and ARPANSA of <0.1% and 7.5%, respectively.  相似文献   

11.
Four spectroradiometers located at latitudes from 55 degrees to 90 degrees S conducted near-continuous measurements of ground-level solar ultraviolet irradiance from 1990 through 2001. The behavior during months from October through December is of special interest because this period includes the springtime loss in column ozone and the naturally large irradiances of early summer. Monthly integrated irradiances using biological weightings for erythema and damage to DNA show a distortion of the normal annual cycle in irradiance, with enhanced values occurring in October and November. In some cases, these irradiances exceed those near summer solstice in December. Changes in local cloudiness and column ozone both contribute significantly to interannual variability in erythemal irradiance. This is particularly the case at Palmer Station, near 65 degrees S, where the monthly integrated erythemal irradiance in November 1997 was more than double that observed 5 years earlier. In general, at sites on the Antarctic continent, interannual variability in monthly integrated erythemal irradiance is greatest in November, when the observation for any given year can fall 40% above or below the multiyear mean. Near the tip of South America, interannual variability is approximately half that seen in Antarctica.  相似文献   

12.
An analysis is made of experimental ultraviolet erythemal solar radiation data measured during the years 2000 and 2001 by the Spanish UV-B radiation evaluation and prediction network. This network consists of 16 Robertson-Berger type pyranometers for evaluating solar erythemal radiation and five Brewer spectroradiometers for evaluating the stratospheric ozone. On the basis of these data the Ultraviolet Index (UVI) was evaluated for the measuring stations that are located either in coastal regions or in the more densely populated regions inland on the Iberian Peninsula. It has been checked that in most cases the maximum irradiance values corresponded to solar noon, although there were exceptions that could be explained by cloudiness. The maximum experimental values of the UVI were around 9 during the summer, though frequently passing this value at the inland measurement stations. The annual accumulated dose of irradiation on a horizontal plane has also been studied, as well as the evolution through the year in units of energy, standard erythemal doses and minimum erythemal doses, according to different phototypes.  相似文献   

13.
The spectral properties of selected UV-blocking and UV-transmitting covering materials were characterized by means of a UV-VIS spectroradiometer or a UV-VIS spectrometer to provide researchers and growers with guidelines for selecting suitable materials for use in studying the effects of ambient solar UV radiation on the production of tomatoes and other high-value crops in high tunnels. A survey was made of a wide range of plastic covering materials to identify commercially available products that had the desired characteristics of transmitting high levels of photosynthetically active radiation and of being stable under ambient solar UV radiation. The study was focused on evaluating films that either blocked or transmitted UV wavelengths below 380 nm to determine comparative growth, yield and market quality and to provide a tool for integrated pest management. Based on this survey, two contrasting covering materials of similar thickness (0.152 mm) and durability (4-year polyethylene), one a UV-blocking film and the other a UV-transmitting film, were selected and used to cover two high tunnels at Beltsville, MD. Spectroradiometric measurements were made to determine comparative spectral irradiance in these two high tunnels covered with these materials and under ambient solar UV radiation. Comparative measurements were also made of selected glass and plastic materials that have been used in UV exclusion studies.  相似文献   

14.
A network of scanning spectroradiometers has acquired a multiyear database of visible solar irradiance, covering wavelengths from 400 to 600 nm, at four sites in the high-latitude Southern Hemisphere, from 55 degrees S to 90 degrees S. Monthly irradiations computed from the hourly measurements reveal the character of the seasonal cycle and illustrate the role of cloudiness as functions of latitude. Near summer solstice, the combined influences of solar elevation and the duration of daylight would produce a monthly irradiation with little latitude dependence under clear skies. However, the attenuation associated with local cloudiness varies geographically, with the greatest effect at the most northern locations, Ushuaia, Argentina and Palmer Station on the Antarctic Peninsula. Near summer solstice, the South Pole experiences the largest monthly irradiation of the sites studied, where relatively clear skies contribute to this result. Scaling factors derived from radiative-transfer calculations combined with the measured 400-600 nm irradiances allow estimating irradiances integrated over the wavelength band 400-700 nm. This produces a climatology of photosynthetically active radiation for each month of the year at each site.  相似文献   

15.
16.
The skin is exposed to ultraviolet radiation (UVR) from natural or artificial sources on a daily basis. The effects of chronic low dose exposure merit investigation, even when these effects are neither conspicuous nor clinically assessable. The purpose of the present study was to define a relative spectral UV irradiance that is representative of frequent nonextreme sun exposure conditions and therefore more appropriate for studies of the long-term and daily effects of solar UV on the skin. Solar spectral UV irradiance values were calculated for different dates and locations by using a radiative transfer model. The spectral irradiance values obtained when the solar elevation is lower than 45 degrees were averaged. An important feature is the dUVA (320-400 nm) to dUVB (290-320 nm) irradiance values ratio, which was found to be 27.3 for the overall average. When the months corresponding to extreme irradiance values (low or high) were excluded from the calculations, the dUVA to dUVB ratio ranged from 27.2 to 27.5. The mean spectral irradiance of the model presented here represents environmental UV exposure conditions and can be used both as a standard to investigate the biological effects of a nonextreme UVR and to assess the effectiveness of products for daily skin protection.  相似文献   

17.
The effect of cloud cover on the amount of solar UV radiation that reaches pedestrians under tree cover was evaluated with a three-dimensional canopy radiation transport model. The spatial distribution of UVB irradiance at the base of a regular array of spherical tree crowns was modeled under the full range of sky conditions. The spatial mean relative irradiance (I), and erythemal irradiance of the entire below-canopy domain and the spatial mean relative irradiance and erythemal irradiance in the shaded regions of the domain were determined for solar zenith angles from 15° to 60°. The erythemal UV irradiance under skies with 50% or less cloud cover was not remarkably different from that under clear skies. In the shade, the actual irradiance was greater under partly cloudy than under clear skies. The mean ultraviolet protection factor for tree canopies under skies with 50% or less cloud cover was nearly equivalent to that for clear sky days. Regression equations of spatially averaged Ir . as a function of cloud cover fraction, solar zenith angle and canopy cover were used to predict the variation in erythemal irradiance in different land uses across Baltimore, MD.  相似文献   

18.
Abstract— Measurements from sensors designed to measure erythemal UV irradiance were used to relate the UV incident on a horizontal surface to that incident on a surface maintained normal to the sun throughout the day at Lauder, New Zealand. These UV measurements were also related to variations in global radiation, total column ozone and atmospheric pressure at the surface. Strong correlations were found between these variables over the 37 day observation period in the summer of 1995/1996. Results from these cross-calibrated UV sensors show that the irradiance incident on a surface normal to the sun can be significantly different from that on a horizontal surface. On clear days, the normal-incidence signal can be 30-40% greater for solar zenith angles in the range 60-70Ao. Consequently, the risk of UV damage can be greater than reported by measurements or models that assume horizontal incidence (e.g. UV index). On cloudy days the normal-incidence UV can be less than 50% of the horizontal-incidence UV. Averaged over a day, any enhancements in normal-incidence UV over horizontal-incidence UV are smaller. The effects were strongly dependent on cloud conditions. Under clear skies the enhancements are generally less than 10%, and the integrated excess over horizontal-incidence UV is usually less than 5%. However, under cloudy skies the reductions can still be large.  相似文献   

19.
Ultraviolet Radiation at Sites on the Antarctic Coast   总被引:1,自引:0,他引:1  
Ground-based measurements of solar UV irradiance combined with calculations using satellite-based ozone data are able to define the variability in UV sunlight at Palmer Station and McMurdo Station, Antarctica over time scales of years. Special attention focuses on the spring and summer seasons. Satellite data show that the annual ozone loss that occurs during October was greater in1991–1992 than in1979–1980. This led to average noontime UVB irradiances computed for clear skies in the latter period that exceeded those in the earlier time by50–65%. However, a biologically weighted irradiance for suppression of photosynthesis in phytoplankton indigenous to the area near McMurdo Station increased by at most 5% over this period in response to the change in ozone owing to an important contribution from the UVA. At Palmer Station the behavior of ozone and cloudiness can mesh so as to produce the largest noontime UVB irradiances of the year in October as opposed to near summer solstice in December and January. Interannual variability in UVB irradiance during October, the month of the major ozone loss, is larger at Palmer than at McMurdo during the time spanned by ground-based irradiance measurements, being1990–1994. However, interannual variations in cloudiness were more important than changes in ozone in causing the observed year-to-year variability at Palmer Station. The opposite situation prevailed at McMurdo during October, where interannual variations in ozone were responsible for most of the year-to-year differences in UVB received at the ground.  相似文献   

20.
Seafarers working on decks of vessels at low latitudes are exposed to extremely high solar UV radiation. Their risk of developing skin cancer may be enhanced. Solar erythemal UV irradiance and exposure were measured for the first time on merchant vessels going along typical international routes at low latitudes. The measurements taken at horizontal incidence on the observation deck, and on different parts of the seaman (head, shoulder, chest and back) doing typical outdoor work show the highest portion (40–80% of horizontal exposure) incident on the head. 2 years of measurements of solar UV and VIS/NIR irradiance taken on the mast top of the Research Vessel METEOR were added to the data base. Radiative transfer model calculations were performed along all the routes with satellite‐based input data of ozone and aerosol for clear sky health‐effective radiation including vitamin D3 (VD3). Measured data show extremely high noontime UV index values up to 19 with clear sky, and up to 22 due to cloud scattering. Eight hours erythemal exposure values are more than double of typical midlatitude summer values. Based on the results, an algorithm is presented to derive a seafarer's personal erythemal exposure according to his/her personal record of sea service.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号