首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The low-lying ro-vibrational states for the ground electronic state (1A1) of HeSi2+ have been calculated using an ab initio variational solution of the nuclear Schr?dinger equation. A 96 point CCSD(T)/cc-pCVQZ potential energy surface (PES) has been calculated and a Ogilvie-Padé (3,6) potential energy function has been generated. This force field was embedded in the Eckart-Watson Hamiltonian from which the vibrational and ro-vibrational eigenfunctions and eigenenergies have been variationally calculated. A 70 point QCISD/aug-cc-pCVTZ discrete dipole moment surface (DMS) was calculated and a 5th order power series expansion (in terms of the two bond lengths and the included bond angle) has been generated. Absolute line intensities have been calculated and are presented for some of the most intense transitions between the vibrational ground state and the low-lying ro-vibrational states of this ion.  相似文献   

2.
Summary Ab initio variational calculations were performed on the rotationally resolved infrared spectrum of KNa 2 + . A discrete potential energy surface was generated using the configuration interaction ansatz coupled with the frozen core approximation, from which an analytical representation was obtained using a power series expansion employing a Dunham expansion variable. This force field was embedded in an Eckart-Watson rovibrational Hamiltonian, from which eigenfunctions and eigenenergies were calculated. An SCF dipole moment surface was generated and used to calculate absolute line intensities and square dipole matrix elements between the vibrational ground state and the lowest-lying excited states for some of the most intense transitions within the P, Q and R branches.  相似文献   

3.
Vibrational transition dipole moments and absorption band intensities for the ground state of formaldehyde, including the deuterated isotopic forms, are calculated. The analysis is based on ab initio SCF and CI potential energy and dipole moment surfaces. The formalism derives from second-order perturbation theory and involves the expansion of the dipole moment in terms of normal coordinates, as well as the incorporation of point group symmetry in the selection of the dipole moment components for the allowed transitions. Dipole moment expansion coefficients for the three molecule-fixed Cartesian coordinates of formaldehyde are calculated for internal and normal coordinate representations. Transition dipole moments and absorption band intensities of the fundamental, first overtone, combination, and second overtone transitions are reported. The calculated intensities and dipole moment derivatives are compared to experiment and discussed in the context of molecular orbital and bond polarization theory.  相似文献   

4.
We have carried out the first calculations of the infrared absorption spectrum of cyclic-N(3). Accurate vibrational energies and wave functions computed with incorporation of the geometric phase effect (via gauge theory) and using an ab initio potential energy surface were employed in this work. A sophisticated fully dimensional dipole moment function was constructed using accurate ab initio calculations and a three-dimensional-spline interpolation. Transformation of the dipole moment vector function from the reference frame associated with instantaneous principal axes of inertia to the laboratory-fixed reference frame was carried out using hyperspherical coordinates. We found that the permanent dipole moment of cyclic-N(3) in the ground vibrational state is relatively small (170 mD). The excited vibrational states show permanent dipole moments in the 10-25 mD range. The most intense part of the infrared absorption spectrum is observed in the deep infrared part of spectrum, 75-275?cm(-1), where five lines exhibit absolute absorption intensities in the range between 0.5 and 1.2 km/mol. These transitions correspond to excitation of the pseudorotational progression of states. Several unique spectroscopic features discussed in the paper should help to identify cyclic-N(3) in the laboratory.  相似文献   

5.
《Chemical physics letters》1986,123(4):243-245
The electric dipole moment of the X2σ+ state of Bal was measured using the molecular-beam laser-microwave double-resonance technique. From the analysis of the splitting and shift of rotational transitions in an electric field, the dipole moment of the vibrational ground state was determined as μ = 5.969(6) D (absolute error of the measurement in parentheses). The dipole moment predicted from an ionic bonding model is 6.14 D.  相似文献   

6.
The excited states and the absorption spectrum of the methylene amidogene radical are studied by high-level ab initio calculations. The multireference configuration interaction method was used in combination with different basis sets and basis set extrapolation to compute equilibrium geometries, harmonic frequencies, and excitation energies of the four lowest doublet electronic states of the title species. Potential curves and transition dipole moment functions were determined along the normal mode coordinates of the electronic ground state. These functions were employed to determine vibronic absorption spectra. The intensities of dipole forbidden but vibronically allowed transitions were calculated by explicitly evaluating integrals over the vibrational wave functions and the transition dipole functions of the involved electronic states. By this method the oscillator strengths of the dipole allowed (2)A(1)<--(2)B(2) and the dipole forbidden (2)B(1)<--(2)B(2) bands were computed. It turns out that the dipole forbidden transition is two orders of magnitude weaker than the dipole allowed one. The 0-0 excitation energies are found to be 30 256 cm(-1) for the (2)B(1) state and 34,646 cm(-1) for the (2)A(1) state. From the combined results of the excitation energies and oscillator strengths it is concluded that the experimentally observed peaks must be due to the (2)A(1) state, in contradiction to earlier assignments.  相似文献   

7.
The rotational spectrum of iodoethyne, HCCI, has been observed in the frequency range from 105 to 305 GHz. A sensitive spectrometer system employing source modulation, a harmonic generator millimeter wave source and a liquid helium cooled InSb-detector has been used. The rotational constants and nuclear quadrupole coupling parameters of HCCI have been obtained for the ground state and the first and second excited vibrational states of ν4. The rotational spectrum of the 2ν5 state has also been identified. The very weak spectrum shows unusual relative intensities which are interpreted by assuming a dipole moment change with ν4 excitation of 0.07 D. The ground state dipole moment is then estimated to be 0.020(10) D.  相似文献   

8.
Three-level and four-level infrared-microwave double resonance effects have been observed in a POF3 sample contained in a microwave waveguide Stark cell that was modified to permit transmission of radiation from a CO2 infrared gas laser. In three-level double resonance experiments laser pumping of rotational states in the ν4 = 1 vibrational state greatly increased the signal/noise for observation of Stark-shifted rotational transitions in the excited vibrational state. The frequencies of the observed excited state transitions were used to confirm the assignment of laser Stark spectra and to obtain independent measures of the rotational constant B and the dipole moment for ν4 = 1. The observation of four level double resonances could be explained qualitatively by the assumption of dipole selection rules for collision-induced transitions. However, the intensities of the double-resonance effects could not be explained by this simple model.  相似文献   

9.
Complementary experimental, ab initio and dynamical investigations are reported on monodeuteroacetylene, C2HD ( 1Σ+). All experimental spectroscopic results previously reported in the literature on C2HD, i.e. from 500 to 16000 cm−1 are gathered. New results are included, which are obtained from the analysis of absorption data recorded with a Fourier transform interferometer at high resolution between 4600 and 9000 cm−1. The presence of numerous weak bands along the whole spectral range is analysed in terms of systematic anharmonic couplings. The entire set of energy data is then used to produce thirty-five vibrational frequencies and anharmonicities from a fit of the vibrational energies to a Dunham-type expansion, and the vibrational level density is extrapolated, up to higher energy. One- and two-dimensional potential energy and dipole moment surfaces refined from new ab initio results are fitted to a selected set among those experimental data, associated to the stretch overtones. The iterative procedure involving an original package of computer programs is described. The evolution of the overtone intensities of the CH and CD stretches, up to η = 4, is interpreted on that basis in terms of electric and mechanical anharmonicity contributions. Eventually, dynamical aspects are studied thanks to the newly introduced vibrograms, which allow to obtain the time recurrences of the vibrational dynamics. Using the Gutzwiller and Berry-Tabor trace formulas, these vibrational recurrences are semiclassically assigned to periodic orbits of the classical Hamiltonian given by the Dunham expansion.  相似文献   

10.
Large-scale SCF CI calculations have been performed for the ground 1Σ+ state of linear SiCC. The calculation includes up to quadruple excitations in the valence space plus all single and double excitations from the valence localized orbitals of the single HF configuration. Vibrational wavefunctions have been derived from the CI potential surface. Vibrational frequencies including anharmonicity corrections are calculated together with the zero-point vibrational correction to the rotational constant. The large dipole moment, 4.62 D, should make this molecule suitable for radioastronomic searches.  相似文献   

11.
A valence-only (V) dipole moment surface (DMS) has been computed for water at the internally contracted multireference configuration interaction level using the extended atom-centered correlation-consistent Gaussian basis set aug-cc-pV6Z. Small corrections to these dipole values, resulting from core correlation (C) and relativistic (R) effects, have also been computed and added to the V surface. The resulting DMS surface is hence called CVR. Interestingly, the C and R corrections cancel out each other almost completely over the whole grid of points investigated. The ground-state CVR dipole of H(2) (16)O is 1.8676 D. This value compares well with the best ab initio one determined in this study, 1.8539+/-0.0013 D, which in turn agrees well with the measured ground-state dipole moment of water, 1.8546(6) D. Line intensities computed with the help of the CVR DMS shows that the present DMS is highly similar to though slightly more accurate than the best previous DMS of water determined by Schwenke and Partridge [J. Chem. Phys. 113, 16 (2000)]. The influence of the precision of the rovibrational wave functions computed using different potential energy surfaces (PESs) has been investigated and proved to be small, due mostly to the small discrepancies between the best ab initio and empirical PESs of water. Several different measures to test the DMS of water are advanced. The seemingly most sensitive measure is the comparison between the ab initio line intensities and those measured by ultralong pathlength methods which are sensitive to very weak transitions.  相似文献   

12.
A complete survey of the various expressions reported by different authors for transition moment matrix elements for infrared transitions of diatomic molecules has been made. The different expressions for fundamentals and overtones are presented in uniform coordinates. Although the expressions look different when compared in their original forms it is found that with the uniform coordinates, several of them are similar in the first few terms. Expressions obtained from the consideration of Morse potential as well as those obtained from inclusion of anharmonic potential are discussed. From the various expressions presented in uniform coordinates general remarks about the effects of inclusion of mechanical and electrical anharmonicity on the intensities of the fundamental and first two overtones are made. Since the effects of inclusion of mechanical and electrical anharmonicity are opposite in sign for the first overtone, it is further discussed that an increase in the intensity of the fundamental band on hydrogen bonding and a slight weakening of the intensity of the first overtone or no change in its intensity can be explained on the basis of an increase in the first and second derivatives of dipole moments on hydrogen bonding. Some general remarks are made regarding the dipole expansions and intensity expressions for polyatomic molecules.  相似文献   

13.
In a previous article we have introduced an alternative perturbation scheme to the traditional one starting from the harmonic oscillator, rigid rotator Hamiltonian, to find approximate solutions of the spectral problem for rotation-vibration molecular Hamiltonians. The convergence of our method for the methane vibrational ground state rotational energy levels was quicker than that of the traditional method, as expected, and our predictions were quantitative. In this second article, we study the convergence of the ab initio calculation of effective dipole moments for methane within the same theoretical frame. The first order of perturbation when applied to the electric dipole moment operator of a spherical top gives the expression used in previous spectroscopic studies. Higher orders of perturbation give corrections corresponding to higher centrifugal distortion contributions and are calculated accurately for the first time. Two potential energy surfaces of the literature have been used for solving the anharmonic vibrational problem by means of the vibrational mean field configuration interaction approach. Two corresponding dipole moment surfaces were calculated in this work at a high level of theory. The predicted intensities agree better with recent experimental values than their empirical fit. This suggests that our ab initio dipole moment surface and effective dipole moment operator are both highly accurate.  相似文献   

14.
It is shown in this paper that from the study of the induced infrared absorption spectra of homonuclear diatomic molecules solvated as impurities in a molecular quantum solid, it is possible to extract information about the rovibrational matrix elements of the multipole moments and polarizability of the embedded molecule. Theoretical expressions are derived for the integrated absorption coefficients of various multipole-field-induced double transitions involving guest-host pairs in a solid para-H(2) matrix. The intensities of some of the quadrupole moment induced transitions involving the N(2)-para-H(2) pair have been measured. From a comparison of the experimental and theoretical intensities, rovibrational matrix elements of the quadrupole moment of N(2) are determined in its ground vibrational state.  相似文献   

15.
Ab initio potential energy and transition dipole moment surfaces are presented for the five lowest singlet even symmetry electronic states of ozone. The surfaces are calculated using the complete active space self consistent field method followed by contracted multireference configuration interaction (MRCI) calculations. A slightly reduced augmented correlation consistent valence triple-zeta orbital basis set is used. The ground and excited state energies of the molecule have been computed at 9282 separate nuclear geometries. Cuts through the potential energy surfaces, which pass through the geometry of the minimum of the ground electronic state, show several closely avoided crossings. Close examination, and higher level calculations, very strongly suggests that some of these seemingly avoided crossings are in fact associated with non-symmetry related conical intersections. Diabatic potential energy and transition dipole moment surfaces are created from the computed ab initio adiabatic MRCI energies and transition dipole moments. The transition dipole moment connecting the ground electronic state to the diabatic B state surface is by far the strongest. Vibrational-rotational wavefunctions and energies are computed using the ground electronic state. The energy level separations compare well with experimentally determined values. The ground vibrational state wavefunction is then used, together with the diabatic B<--X transition dipole moment surface, to form an initial wavepacket. The analysis of the time-dependent quantum dynamics of this wavepacket provides the total and partial photodissociation cross sections for the system. Both the total absorption cross section and the predicted product quantum state distributions compare well with experimental observations. A discussion is also given as to how the observed alternation in product diatom rotational state populations might be explained.  相似文献   

16.
The "hot bands" of the Huggins band of ozone are assigned, in both the 218 K and the 295 K spectrum. The assignment is based on intensities calculated with three-dimensional vibrational wave functions for the electronic ground state (X) and the excited state (B). The hot-band structures in the 218 K spectrum all can be assigned to transitions starting from vibrational states with one quantum of stretching excitation in the ground electronic state. The 295 K spectrum shows new structures, which are due to transitions originating from vibrational states in the X state with two quanta of excitation of the stretching modes--despite very small Boltzmann factors. All structures in the low-energy range of the 295 K spectrum, even the very weak ones, thus can be uniquely interpreted. The significance of hot bands results from the strong increase of Franck-Condon factors with excitation of the stretching modes in both the lower and/or the upper electronic states, whose equilibrium bond lengths differ significantly.  相似文献   

17.
《Chemical physics letters》1986,124(2):187-190
A new approach to the theory of intensities of vibrational overtone transitions is formulated in terms of vibrational coupling of the molecular ground state to excited electronic states. Model calculations indicate an important role of nuclear geometry of the excited electronic states in determining overtone spectra. It is shown that the observed overtone spectrum of the CH stretching mode in benzene can be reproduced theoretically with the assumption that CH bond lengths in the elu electronic state are shortened relative to the ground configuration. A simple rule for qualitative prediction of the overtone spectra for diatomic molecules is proposed.  相似文献   

18.
The electric dipole moment in the ground state (vp = 0) and the first five excited states (vp = 1 … 5) of the ring puckering vibration of thietane have been determined from Stark shifts of rotational transitions. The results are: 0|μa|0 = 1.87583(16) D, 1|μa|1 = 1.87341(18) D, 2|μa|2 = 1.89759(28) D, 3|μa|3 = 1.88688(29) D, 4|μa|4 = 1.90036(18) D, 5|μa|5 = 1.88596(59) D. The dependence of these values on vp shows the zig-zagging behaviour typical of modes with double minimum potentials. A combined analysis of the ground and first excited states yielded also a precise value for the transition moment, 0|μc|1 = 0.24023(49) D.

A potential and electric dipole moment function has been derived from ab initio calculations, using MP2 and the 6–31G** basis set. Expectation values of the dipole and transition moments were determined from these data. Absolute values are about 5% in error, but the variation with vibrational state is reproduced excellently by the theoretical values.  相似文献   


19.
The intensities of vibrational overtone absorption transitions are described in terms of vibronic coupling of the ground molecular state to excited electronic configurations. Model calculations indicate an important role of nuclear geometry of excited electronic states relative to the ground state in determination of molecular overtone spectra. A simple rule for qualitative predictions of the overtone spectra for diatomic molecules or local bond modes of polyatomic molecules is proposed.  相似文献   

20.
Peroxynitrous acid (HOONO) is generated in a pulsed supersonic expansion through recombination of photolytically generated OH and NO(2) radicals. A rotationally resolved infrared action spectrum of HOONO is obtained in the OH overtone region at 6971.351(4) cm(-1) (origin), providing definitive spectroscopic identification of the trans-perp (tp) conformer of HOONO. Analysis of the rotational band structure yields rotational constants for the near prolate asymmetric top, the ratio of the a-type to c-type components of the transition dipole moment for the hybrid band, and a homogeneous linewidth arising from intramolecular vibrational energy redistribution and/or dissociation. The quantum state distribution of the OH (nu=0,J(OH)) products from dissociation is well characterized by a microcanonical statistical distribution constrained only by the energy available to products, 1304+/-38 cm(-1). This yields a 5667+/-38 cm(-1) [16.2(1) kcal mol(-1)] binding energy for tp-HOONO. An equivalent available energy and corresponding binding energy are obtained from the highest observed OH product state. Complementary high level ab initio calculations are carried out in conjunction with second-order vibrational perturbation theory to predict the spectroscopic observables associated with the OH overtone transition of tp-HOONO including its vibrational frequency, rotational constants, and transition dipole moment. The same approach is used to compute frequencies and intensities of multiple quantum transitions that aid in the assignment of weaker features observed in the OH overtone region, in particular, a combination band of tp-HOONO involving the HOON torsional mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号