首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
A simple and sensitive indirect spectrophotometric method for the assay of meloxicam (MX), tenoxicam (TX) and piroxicam (PX) in pure and in pharmaceutical formulations by flow injection analysis (FIA) has been proposed. The method is based on the oxidation of these drugs by a known excess of N-bromosuccinimide (NBS) in an acidic medium, followed by a reaction of excess oxidant with chloranilic acid (CAA) to bleach its purple color. The absorbance values increased linearly with increasing concentrations of the drugs. Variables, such as the acidity, reagent concentrations, flow rate of reagents and other FI parameters were optimized to produce the most sensitive and reproducible results. The system obeyed Beer's low over concentration ranges of 10 - 160, 20 - 200 and 10 - 160 microg/ml for MX, TX and PX, respectively. The common excipients and additives did not interfere with their determinations. The method was successfully applied to the determinations of MX, TX and PX in various pharmaceutical preparations. The results obtained by the proposed method were found to be in good agreement with those found by the official HPLC methods.  相似文献   

2.
Two simple and sensitive indirect spectrophotometric methods for the assay of propranolol hydrochloride (PPH) and piroxicam (PX) in pure and pharmaceutical formulations have been proposed. The methods are based on the oxidation of PPH by a known excess of standard N-bromosuccinimide (NBS) and PX by ceric ammonium sulfate (CAS) in an acidic medium followed by the reaction of excess oxidant with promethazine hydrochloride (PMH) and methdilazine hydrochloride (MDH) to yield red-colored products. The absorbance values decreased linearly with increasing concentration of the drugs. The systems obeyed Beer's law over the concentration ranges of 0.5 - 12.5 and 0.3 - 16.0 microg/ml for PPH, and 0.4 - 7.5 and 0.2 - 10 microg/ml for PX with PMH and MDH, respectively. Molar absorptivity values, as calculated from Beer's law data, were found to be 1.36 x 10(4) and 2.55 x 10(4) l mol(-1) cm(-1) for PPH, and 2.08 x 10(4) and 2.05 x 10(4) l mol(-1) cm(-1) for PX with PMH and MDH, respectively. The common excipients and additives did not interfere with their determinations. The proposed methods have been successfully applied to the determinations of PPH and PX in various dosage forms. The results obtained by the proposed methods compare favorably with those of official methods.  相似文献   

3.
Two simple, accurate, and reliable spectrophotometric methods have been developed for the determination of 2 antiviral drugs, acyclovir (ACV) and ribavirin (RBV), in their pharmaceutical formulations. These methods are based on oxidation of the 2 drugs with either cerium (IV) ammonium sulfate (Method A) or potassium persulfate (Method B). The products of oxidation in both methods are coupled with 3-methylbenzothiazolin 2-one hydrazone, producing a deep blue color with a maximum absorption wavelength at 630 nm. In Method A, the absorbance-concentration plots were linear over the ranges of 5-50 and 10-60 microg/mL with detection limits of 0.18 microg/mL (8 x 10(-7) M) and 0.63 microg/mL (2.58 x 10(-6) M) for ACV and RBV, respectively. In Method B, the ranges were 5-45 and 20-50 microg/mL with detection limits of 0.11 microg/mL (4.88 x 10(-7) M) and 1.40 microg/mL (5.73 x 10(-6) M) for the 2 drugs, respectively. The molar absorptivities were 4.1 x 10(3) and 3.65 x 10(3) L/mol/cm in Method A and 5.03 x 10(3) and 3.97 x 10(3) L/mol/cm in Method B for the 2 drugs, respectively. The proposed methods were applied successfully for the determination of the 2 drugs in their pharmaceutical formulations. The percentage recoveries +/- standard deviation were 99.57 +/- 0.86 and 100.82 +/- 0.46 for ACV; 99.41 +/- 1.08 and 100.35 +/- 1.03 for RBV. The results obtained were compared statistically with those given by official methods and showed no significant differences regarding accuracy and precision.  相似文献   

4.
Two simple and accurate spectrophotometric methods are presented for the determination of anti-malarial drugs, chloroquine phosphate (CQP) and pyrimethamine (PYM), in pure and in different pharmaceutical preparations. The charge transphere (CT) reactions between CQP and PYM as electron donors and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) pi-acceptor and iodine sigma-acceptor reagents to give highly coloured complex species have been spectrophotometrically studied. The optimum experimental conditions have been studied carefully. Beer' law is obeyed over the concentration range of 1.0-15 microg ml(-1) for CQP and 1.0-40 microg ml(-1) for PYM using I(2) and at 5.0-53 microg ml(-1) for CQP and 1.0-46 microg ml(-1) for PYM using DDQ reagents, respectively. For more accurate results, Ringbom optimum concentration range is calculated and found to be 10-53 and 8-46 microg ml(-1) for CQP and PYM using DDQ, respectively and 5-15 and 8-40 microg ml(-1) for CQP and PYM using iodine, respectively. The Sandell sensitivity is found to be 0.038 and 0.046 g cm(-2) for DDQ method and 0.0078 and 0.056 g cm(-2) for I(2) method for CQP and PYM, respectively which indicates the high sensitivity of both methods. Standard deviation (S.D.=0.012-0.014 and 0.013-0.015) and relative standard deviation (R.S.D.=0.09-1.4 and 1.3-1.5%) (n=5) for DDQ and I(2) methods respectively, refer to the high accuracy and precision of the proposed methods. These results are also confirmed by between day precision of percent recovery of 99-100.6%, and 98-101% for CQP and PYM by DDQ method and 99-102% and 99.2-101.4% for CQP and PYM by I(2) method respectively. These data are comparable to those obtained by British and American pharmacopoeias assay for the determination of CQP and PYM in raw materials and in pharmaceutical preparations.  相似文献   

5.
Two simple and accurate spectrophotometric methods are presented for the determination of beta-lactam drugs, flucloxacillin (Fluclox) and dicloxacillin (Diclox), in pure and in different pharmaceutical preparations. The charge transfer (CT) reactions between Fluclox and Diclox as electron donors and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) pi-acceptor and potassium iodate via oxidation reduction reaction where the highly coloured complex species or the liberated iodine have been spectrophotometrically studied. The optimum experimental conditions have been studied carefully. Beer's law is obeyed over the concentration range of 2-450 microg ml(-1) for Fluclox and 10-450 microg ml(-1) for Diclox using DDQ reagent and at 50-550 microg ml(-1) for Fluclox and 50-560 microg ml(-1) for Diclox using iodate method, respectively. For more accurate results, Ringbom optimum concentration range is calculated and found to be 6-450 and 15-450 microg ml(-1) for Fluclox and Diclox using DDQ, respectively, and 65-550 and 63-560 microg ml(-1) for Fluclox and Diclox using iodine, respectively. The Sandell sensitivity is found to be 0.018 and 0.011 microg cm(-2) for DDQ method and 0.013 and 0.011 microg cm(-2) for iodate method for Fluclox and Diclox, respectively, which indicates the high sensitivity of both methods. Standard deviation (S.D.=0.01-0.80 and 0.07-0.98) and relative standard deviation (R.S.D.=0.13-0.44 and 0.11-0.82%) (n=5) for DDQ and iodate methods, respectively, refer to the high accuracy and precision of the proposed methods. These results are also confirmed by between-day precision of percent recovery of 99.87-100.2 and 99.90-100% for Fluclox and Diclox by DDQ method and 99.88-100.1 and 99.30-100.2% for Fluclox and Diclox by iodate method, respectively. These data are comparable to those obtained by British and American pharmacopoeias assay for the determination of Fluclox and Diclox in raw materials and in pharmaceutical preparations.  相似文献   

6.
Simple, rapid and highly sensitive spectrofluorimetric method is presented for the determination of four fluoroquinolone (FQ) drugs, ciprofloxacin, enoxacin, norfloxacin and moxifloxacin in pharmaceutical preparations. Proposed method is based on the derivatization of FQ with 4-chloro-7-nitrobenzofurazan (NBD-Cl) in borate buffer of pH 9.0 to yield a yellow product. The optimum experimental conditions have been studied carefully. Beer's law is obeyed over the concentration range of 23.5-500 ng mL(-1) for ciprofloxacin, 28.5-700 ng mL(-1) for enoxacin, 29.5-800 ng mL(-1) for norfloxacin and 33.5-1000 ng mL(-1) for moxifloxacin using NBD-Cl reagent, respectively. The detection limits were found to be 7.0 ng mL(-1) for ciprofloxacin, 8.5 ng mL(-1) for enoxacin, 9.2 ng mL(-1) for norfloxacin and 9.98 ng mL(-1) for moxifloxacin, respectively. Intra-day and inter-day relative standard deviation and relative mean error values at three different concentrations were determined. The low relative standard deviation values indicate good precision and high recovery values indicate accuracy of the proposed methods. The method is highly sensitive and specific. The results obtained are in good agreement with those obtained by the official and reference method. The results presented in this report show that the applied spectrofluorimetric method is acceptable for the determination of the four FQ in the pharmaceutical preparations. Common excipients used as additives in pharmaceutical preparations do not interfere with the proposed method.  相似文献   

7.
Simple, accurate, reproducible, selective, sensitive and cost effective UV-spectrophotometric methods were developed and validated for the estimation of trigonelline in bulk and pharmaceutical formulations. Trigonelline was estimated at 265 nm in deionised water and at 264 nm in phosphate buffer (pH 4.5). Beer's law was obeyed in the concentration ranges of 1-20microg mL(-1) (r2=0.9999) in deionised water and 1-24 microg mL(-1) (r2=0.9999) in the phosphate buffer medium. The apparent molar absorptivity and Sandell's sensitivity coefficient were found to be 4.04 x 10(3)L mol(-1)cm(-1) and 0.0422 microg cm(-2)/0.001A in deionised water; and 3.05 x 10(3)L mol(-1)cm(-1) and 0.0567 microg cm(-2)/0.001A in phosphate buffer media, respectively. These methods were tested and validated for various parameters according to ICH guidelines. The detection and quantitation limits were found to be 0.12 and 0.37 microg mL(-1) in deionised water and 0.13 and 0.40 microg mL(-1) in phosphate buffer medium, respectively. The proposed methods were successfully applied for the determination of trigonelline in pharmaceutical formulations (vaginal tablets and bioadhesive vaginal gels). The results demonstrated that the procedure is accurate, precise, specific and reproducible (percent relative standard deviation <2%), while being simple and less time consuming and hence can be suitably applied for the estimation of trigonelline in different dosage forms and dissolution studies.  相似文献   

8.
Some nitrophenols are proposed as chromogenic reagents for the spectrophotometric determination of flucloxacillin. The reagent forms a greenish yellow 1:1 complex with flucloxacillin at pH 9.0. This complex is stable for at least 3.0 h after its formation. The greenish yellow charge transfer complex species has an absorption maximum at 446, 435, 442, 473 and 439 nm for p-nitrophenol (I), 2,4-dinitrophenol (II), 3,5-dinitrosalycilic acid (III), picramic acid (IV) and picric acid (V), respectively, with a molar absorptivity between 1.43 x 10(4) and 2.59 x 10(4) l mol(-1) cm(-1). Beer's low is valid over the concentration range 2.0-40 microg ml(-1) of flucloxacillin. The detection and quantitation limits as well as relative standard deviation were also calculated. The reagents have been successfully used for the spectrophotometric determination of flucloxacillin in pure form and in pharmaceutical preparations.  相似文献   

9.
A simple, accurate and sensitive method for the microdetermination of benzocaine, lignocaine and procaine hydrochlorides in pure forms and in pharmaceutical formulations is described. The procedure is based on the reaction of those drugs in an aqueous acidic medium with p-benzoquinone to form charge-transfer complexes. The method has been used for the determination of 5.0-70, 5.0-60 and 5.0-90 microg ml(-1) of benzocaine, lignocaine HCl and procaine HCl, respectively. The complexes have apparent molar absorptivities of 1.70 x 10(3), 2.79 x 10(3) and 2.42 x 10(3) L mol(-1) cm(-1) and Sandell sensitivities of 9.72, 10.34 and 11.25 ng cm(-2), respectively. The proposed procedure of analysis is as accurate as the British Pharmacopoeial method (2003). The method was successfully used for the determination of those drugs in the presence of their degradation products, additives and excipients, which were normally encountered in pharmaceutical formulations.  相似文献   

10.
New, simple, cost effective, accurate and reproducible UV-spectrophotometric methods were developed and validated for the estimation of moxifloxacin in bulk and pharmaceutical formulations. Moxifloxacin was estimated at 296 nm in 0.1N hydrochloric acid (pH 1.2) and at 289 nm in phosphate buffer (pH 7.4). Beer's law was obeyed in the concentration range of 1-12 microg ml(-1) (r2=0.9999) in hydrochloric acid and 1-14 microg ml(-1) (r2=0.9998) in the phosphate buffer medium. The apparent molar absorptivity and Sandell's sensitivity coefficient were found to be 4.63 x 10(4) l mol(-1) cm(-1) and 9.5 ng cm(-2)/0.001 A in hydrochloric acid; and 4.08 x 10(4) l mol(-1) cm(-1) and 10.8 ng cm(-2)/0.001 A in phosphate buffer media, respectively indicating the high sensitivity of the proposed methods. These methods were tested and validated for various parameters according to ICH guidelines. The detection and quantitation limits were found to be 0.0402, 0.1217 microg ml(-1) in hydrochloric acid and 0.0384, 0.1163 microg ml(-1) in phosphate buffer medium, respectively. The proposed methods were successfully applied for the determination of moxifloxacin in pharmaceutical formulations (tablets, i.v. infusions, eye drops and polymeric nanoparticles). The results demonstrated that the procedure is accurate, precise and reproducible (relative standard deviation <2%), while being simple, cheap and less time consuming and hence can be suitably applied for the estimation of moxifloxacin in different dosage forms and dissolution studies.  相似文献   

11.
《Electroanalysis》2002,14(24):1699-1706
An application of a partial least squares calibration method for the simultaneous voltammetric determination of indomethacin, acemethacin, piroxicam and tenoxicam is suggested. It was shown that it is possible to resolve complex mixtures of analytes even when they have strongly overlapped signals. In order to check the proposed method, statistical analysis of the results was performed by mean of hypothesis tests. The method developed was applied to the electrochemical reduction region of four anti‐inflammatory drugs and allowed the drugs to be quantified at concentrations between 0.52 and 4.09 μg mL?1 for acemethacin, 0.44 and 3.50 μg mL?1 for indomethacin, 0.43 and 3.40 μg mL?1 for piroxicam, and 0.42 and 3.30 μg mL?1 for tenoxicam with good results. The average absolute value of relative errors was 2.25%, 4.31%, 1.68% and 2.49%, respectively.  相似文献   

12.
A selective, precise, and accurate method was developed for the determination of cimetidine (C), famotidine (F), and ranitidine hydrochloride (R x HCl) in the presence of their sulfoxide derivatives. The method involves quantitative densitometric evaluation of mixtures of the drugs and their derivatives after separation by high-performance thin-layer chromatography on silica gel plates (10 x 20 cm) with ethyl acetate-isopropanol-20% ammonia (9 + 5 + 4, v/v) as the mobile phase for both C and F and ethyl acetate-methanol-20% ammonia (10 + 2 + 2, v/v) as the mobile phase for R x HCl; Rf values for C, F, and R x HCl and their corresponding derivatives were 0.85 and 0.59, 0.73 and 0.41, and 0.56 and 0.33, respectively. Developing time was approximately 20 min. For densitometric evaluation, peak areas were recorded at 218, 265, and 313 nm for C, F, and R x HCl, respectively. The relationship between concentration and the corresponding peak area was plotted for the ranges of 5-50 microg/spot for C and 2-20 microg/spot for F and R x HCl. Mean recoveries were 100.39 +/- 1.33, 99.77 +/- 1.30, and 100.09 +/- 0.69% for C, F, and R x HCl, respectively. The proposed method was used successfully for stability testing of the pure drugs in the presence of up to 90% of their degradates, in bulk powder and dosage forms. The results obtained were analyzed statistically and compared with those obtained by the official methods.  相似文献   

13.
This paper reports a simple and fast method for the simultaneous determination of estradiol (ED) and medroxyprogesterone acetate (MP) in pharmaceutical formulations by second-derivative spectrophotometry. Methanol was used to extract the drugs from formulations, and subsequently the extracts were evaluated directly by derivative spectrophotometry. The drugs were determined simultaneously by using the graphic method at 297.4 nm for ED and the zero-crossing method at 273.4 nm for MP. If both compounds are present together in a sample, it is possible to quantitate one in the presence of the other. The best signal-to-noise ratio was found when the second derivative of the spectrum was used. The linear ranges for determination of the drugs were 4.7 x 10(-6) to 1.6 x 10(-4) and 7.2 x 10(-6) to 2.0 x 10(-4) mol/L for ED and MP, respectively. The ingredients commonly found in commercial pharmaceutical formulations do not interfere with the determination. Chemical and spectral variables were optimized for the determination of both analytes. Good levels of repeatability (relative standard deviation), 1.4 and 1.9%, were obtained for ED and MP, respectively. The proposed method was applied to the determination of these drugs in pharmaceutical formulations.  相似文献   

14.
A simple and highly selective method for the determination of piroxicam and pyridoxine (vitamin B6) in pharmaceutical formulations is presented. The approach is based on the combination of solid-phase extraction (SPE) and room-temperature fluorimetry (RTF). SPE under optimum pH conditions provides the separation between piroxicam and pyridoxine. The selectivity of analysis, the analytical figures of merit, and the accuracy of the method are demonstrated with the determination of piroxicam and pyridoxine in several pharmaceutical preparations.  相似文献   

15.
A simple and highly sensitive spectrophotometric method for the determination of anthracycline anticancer agents, such as Daunorubicin hydrochloride (DAU), was established by using aluminum(III) and Chromazurol S (CAS) in a nonionic surfactant micellar medium. In the case of determination of DAU, the apparent molar absorptivity was 1.3 x 10(5) dm3 mol(-1) cm(-1) at 615 nm. Beer's law was obeyed in the concentration range of 0.028 - 2.82 microg ml(-1) for DAU. Owing to no need for solvent extraction, this method could be applied to assays of DAU and related drugs in pharmaceutical preparations.  相似文献   

16.
Two sensitive and simple spectrophotometric methods are developed for the determination of trazodone HCl, famotidine, and diltiazem HCl in pure and pharmaceutical preparations. The methods are based on the oxidation of the cited drugs with iron(III) in acidic medium. The liberated iron(II) reacts with 1,10-phenanthroline (method A) and the ferroin complex is colorimetrically measured at 510 nm against reagent blank. Method B is based on the reaction of the liberated Fe(II) with 2,2-bipyridyl to form a stable colored complex with lambda(max )at 520 nm. Optimization of the experimental conditions was described. Beer's law was obeyed in the concentration range of 1-5, 2-12, and 12-32 microg mL(-1) for trazodone, famotidine, and diltiazem with method A, and 1-10 and 8-16 microg mL(-1) for trazodone and famotidine with method B. The apparent molar absorptivity for method A is 1.06x10(5), 2.9x10(4), 1.2x10(4) and for method B is 9.4x10(4 )and 1.6x10(4), respectively. The suggested procedures could be used for the determination of trazodone, famotidine, and diltiazem, both in pure and dosage forms without interference from common excipients.  相似文献   

17.
A simple, rapid and accurate spectrophotometric method for the determination of antibiotic drugs, flucloxacillin (Fluclox) and dicloxacillin (Diclox), in pure form and different pharmaceutical preparations has been developed. The charge transfer (CT) reactions between Fluclox and Diclox as electron donors and 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE) as pi-acceptors to give highly coloured complex species have been spectrophotometrically studied. The optimum experimental conditions for these CT reactions have been studied carefully. Beer's law is obeyed over the concentration ranges of 4-180 microg mL(-1) and 4-70 microg mL(-1) for Fluclox and Diclox drugs using TCNQ and TCNE reagents, respectively. The Sandell sensitivities (S) are found to be 0.016-0.035 microg cm(-2) and 0.011-0.016 microg cm(-2) for Fluclox and Diclox, respectively, which indicate the high sensitivity of the proposed method. The relative standard deviations (R.S.D.: 0.08-0.49 and 0.15-0.80) for the determination of Fluclox and (R.S.D.: 0.05-0.75 and 0.13-0.75) for Diclox were obtained for four to six replicates using TCNQ and TCNE reagents, respectively, refer to the high accuracy and precision of the proposed method. These results are also confirmed by the between-day precision and the percent recovery of 99.90-100.1 and 99.60-100.4 for Fluclox and 99.90-100.5 and 99.40-100.1 for Diclox using TNCQ and TCNE reagents, respectively. The results obtained for the two reagents are comparable with those obtained by the official method.  相似文献   

18.
An investigation has been conducted into the metabolism and urinary excretion of orally administered piroxicam and tenoxicam in the horse. The major component detected in urine after the administration of piroxicam was 5'-hydroxypiroxicam, which was detectable up to 24 h post-administration. Unchanged piroxicam was present only as a minor component. In contrast, unchanged tenoxicam was the major component observed after the administration of tenoxicam, being detectable for 72 h post-administration, while 5'-hydroxytenoxicam was a minor component. Phase II beta-glucuronide conjugation in each case was found to be negligible. The ion trap mass spectral characteristics of piroxicam, tenoxicam, 5'-hydroxypiroxicam and 5'-hydroxytenoxicam under electrospray ionisation conditions were examined in some detail.  相似文献   

19.
New ranitidine hydrochloride (RaCl)-selective electrodes of the conventional polymer membrane type are described. They are based on incorporation of ranitidine-tetraphenylborate (Ra-TPB) ion-pair or ranitidine-phosphotungstate (RaPT) ion-associate in a poly(vinyl chloride) (PVC) membrane plasticized with dioctylphthalate (DOP) or dibutylphthalate (DBP). The electrodes are fully characterized in terms of the membrane composition, solution temperature, and pH. The sensors showed fast and stable responses. Nernstian response was found over the concentration range of 2.0 x 10(-5) M to 1.0 x 10(-2) M and 1.0 x 10(-5) M to 1.0 x 10(-2) M in the case of Ra-TPB electrode and over the range of 1.03 x 10(-5) M to 1.00 x 10(-2) M and 1.0 x 10(-5) M to 1.0 x 10(-2) M in the case of Ra-PT electrode for batch and FIA systems, respectively. The electrodes exhibit good selectivity for RaCl with respect to a large number of common ions, sugars, amino acids, and components other than ranitidine hydrochloride of the investigated mixed drugs. The electrodes have been applied to the potentiometric determination of RaCl in pure solutions and in pharmaceutical preparations under batch and flow injection conditions with a lower detection limit of 1.26 x 10(-5) M and 5.62 x 10(-6) M at 25 +/- 1 degrees C. An average recovery of 100.91% and 100.42% with a relative standard deviation of 0.72% and 0.53% has been achieved.  相似文献   

20.
New spectrophotometric and fluorimetric methods have been developed to determine diazepam, bromazepam and clonazepam (1,4-benzodiazepines) in pure forms, pharmaceutical preparations and biological fluid. The new methods are based on measuring absorption or emission spectra in methanolic potassium hydroxide solution. Fluorimetric methods have proved selective with low detection limits, whereas photometric methods showed relatively high detection limits. Successive applications of developed methods for drugs determination in pharmaceutical preparations and urine samples were performed. Photometric methods gave linear calibration graphs in the ranges of 2.85-28.5, 0.316-3.16, and 0.316-3.16 microgml-1 with detection limits of 1.27, 0.08 and 0.13 microgml-1 for diazepam, bromazepam and clonazepam, respectively. Corresponding average errors of 2.60, 5.26 and 3.93 and relative standard deviations (R.S.D.s) of 2.79, 2.12 and 2.83, respectively, were obtained. Fluorimetric methods gave linear calibration graphs in the ranges of 0.03-0.34, 0.03-0.32 and 0.03-0.38 microgml-1 with detection limits of 7.13, 5.67 and 16.47 ngml-1 for diazepam, bromazepam and clonazepam, respectively. Corresponding average errors of 0.29, 4.33 and 5.42 and R.S.D.s of 1.27, 1.96 and 1.14 were obtained, respectively. Statistical Students t-test and F-test have been used and satisfactory results were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号