首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blends obtained from Biopol D600G and polyamide 6 reveal in DSC investigations multiphase structure with a distinct crystalline polyamide 6 phase. Due to rapid crystallization of the polyamide 6 the crystallization of the Biopol D600G is retarded. The grade of crystallization of Biopol D600G is lower in the blends than in the pure state, as calculated from the melting enthalpies. Crystallization of polyamide 6 in the blends is faster and results in increasing of the grade of crystallization of polyamide 6 phase comparing to the unblended component. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Polymer blends of poly(β-hydroxybutyrate-co-b-hydroxyvalerate) (Biopol) with polyamide 11, possessing copolyester continuous phase, were degraded during 25 weeks in compost. The biodegradation was followed by mass loss and melting enthalpy measurements. The degradability was primary dependent on the hydroxyvalerate content in the blend. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Equilibrium melting temperatures and crystallization parameters of polyamide 6/polyurethane blends were investigated. Thermal properties of the crystalline phase of blends obtained from polyamide 6 and polyurethane containing 40 wt% of hard segments, are only limited influenced by the overall blend compositon. Because from separate measurements single glass transitions for all samples were estimated, so in the investigated case the blending process may occur mainly between amorphous fraction of polyamide 6 and the polyurethane or, what is more probable, the polyurethane phase is dispersed in the continuous polyamide matrix, although some interactions exist.  相似文献   

4.
The mechanical properties of poly(vinyl acetate) (PVAc)/epoxy thermosets as a function of the PVAc content were investigated through dynamic mechanical thermal analysis from −100 to 220 °C and through tensile tests at room temperature. The morphology of the thermosets was examined by scanning electron microscopy. Cured PVAc/epoxy blends are phase separated, arising two phases that correspond to a PVAc-rich phase and to the epoxy rich-phase. The morphology evolves from nodular to inverted as the PVAc content increases. Intermediate compositions present combined morphologies, in which nodular and inverted regions are detected. The tensile properties at room temperature reveal that combined morphologies present the most ductile behaviour. The glass transition temperatures (T g) of PVAc and of epoxy phases in the blends are different from those of the neat polymers. The profile of the loss modulus (E″)–temperature curves are correlated with the change in morphology that appears increasing the PVAc content. The storage modulus (E′)–temperature curves are highly dependent on the morphology of the samples. The E′-composition dependence is predicted using several models for two-phase composites. The low-temperature β-relaxation of the epoxy is slightly modified by the presence of PVAc. The activation energies of the α and β-relaxations are not dependent on the blend morphology.  相似文献   

5.
The dynamic mechanical properties of vinyloxyaminosilane grafted ethylene propylene diene terpolymer/linear low density polyethylene (EPDM-g-VOS/LLDPE) blends have been evaluated with special reference to the effect of blend ratio. It has been found that increasing the proportion of LLDPE in the blends decreases the Tg values and increases the storage modulus (E) and loss modulus (E′′) due to increase in crystallinity. A gradual increase in the values of tanδmax is observed for the blends with increase in EPDM-g-VOS concentration, which indicates that no phase inversion occurs. But however the higher increase in tanδmax after 50 wt.% of EPDM-g-VOS composition is due to small change in crystallinity and is ascertained by SEM micrographs. Mechanical properties such as tensile strength, Young’s modulus and hardness increase with increases in LLDPE concentration in the blends and with dicumyl peroxide (DCP) concentration whereas the values of elongation at break are decreased with increase in LLDPE and DCP concentration.  相似文献   

6.
The aim of the work presented is to evaluate the mechanisms and phase interactions in ternary blends based on different polyamides and functionalised elastomers, and to establish a correlation between the morphology controlled by the specific binary interactions, and physical and technological properties, respectively. The properties of the ternary system polyamide 6/polyamide 66/ elastomer depend on the specific blend morphology which is determined mainly by the differences of the surface tension of the components. A phase‐in‐phase structure was observed by microscopic study (AFM) in the ternary polyamide 6/polyamide 66/elastomer blends with maleic anhydride grafted ethene‐octene copolymer, and a “quasi” phase‐in‐phase structure in blends with maleic anhydride grafted ethene‐propene‐diene copolymer as the elastomer phase. An incorporation of polyamide inside of the elastomer particles was observed in the first case due to the difunctionality of polyamide 66. This type of morphology causes an increased elongation at break and toughness of these blends. In comparison to the binary polyamide based blends the ternary blends show an increased elastic modulus, elongation at break and yield stress as well as a high impact strength at low temperatures up to ?20 °C. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The effect of nanoclay fraction on the linear and non-linear tensile properties of a polyethylene/polyamide 12 blend with droplet morphology was investigated. All ternary blends were prepared at a fixed polyamide (PA) weight fraction of 20%, and at clay volume fractions varying from 0.5 to 2.5% relative to PA. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of the blends and the clay interphase structure. The nanoclay content was shown to strongly influence both linear and non-linear tensile properties. Young's modulus, elongation at yield, yield strength, tensile strength and elongation at break as a function of clay fraction were studied and discussed in terms of morphological changes and strain-induced structural reorganization of the clay interphase.  相似文献   

8.
Nanostructured polyketone (PK)/polyamide 6 (PA6) blends can be readily prepared via melt blending technologies and exhibit ultra-high toughness when PA6 is present as the nanoscale phase domains. When PA6 content is 30 vol%, the impact strength of the blends increases from 21.4 kJ/m2 of pure PK to 103.2 kJ/m2. The impact strength of the PK/PA6 blends with a 5:5 composition ratio reaches as high as 113 kJ/m2. The strong intermolecular force between PK and PA6 molecular chains enables the PA6 nanophase to cavitate to dissipate a significant amount of impact energy and effectively prevents the crack propagation or even terminates the cracks. The fracture mechanism of the PK/PA6 blends was further examined by the essential work of fracture method which proves that PK/PA6 blends show improved ability to prevent crack propagation. This work may deepen the understanding of polymer blend systems with strong hydrogen bonding interaction.  相似文献   

9.
Two blends between polyamide 6 (PA6) and Polyamide 6co6T (PA6co6T, a random copolymer between polyamide 6 and polyamide 6T) were fabricated by melt‐mixing on a twin‐screw extruder and the subsequent injection molding, or through the in‐situ polymerization of ε‐caprolactam in the presence of PA6co6T. As far as the former method is concerned, there exist an obvious decline of toughness and a slight increase in strength and modulus; however, for the latter, there appear a remarkable improvement in toughness and a simultaneous moderate increase in strength and modulus. A series of characterizations were carried out including scanning electron microscopy, wide‐angle X‐ray diffraction, polarized optical microscopy, differential scanning calorimetry, dynamic mechanical analysis, and Fourier transform infrared spectrometry. It is found that both blends exhibit single glass transition on DMA tan δ curves. However, contrary to that of the melt‐mixed blends, the glass transition temperature (Tg) of the in‐situ ones decreases with increasing PA6co6T content. It is suggested that different mixing levels are the main reasons. Moreover, the addition of PA6co6T containing linear rigid segments conducts remarkable refinement of spherulites for the blends. Significantly different changes in the crystallographic form, spherulite size, crystalline content and perfection due to the introduction of PA6co6T for the two blends are ascribed to their varied thermomechanical histories and the presence of interchange reaction only for the in‐situ blends. On the basis of the characterizations of the microstructures, the different trends of changes in the mechanical properties with the addition of PA6co6T for the two fabrication methods are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 201–211, 2008  相似文献   

10.
Blends of ethylene‐glycidyl methacrylate copolymer (PE‐GMA) and polyamide 6 (PA6) were prepared in a corotating twin screw extruder. Two processing temperatures were used in order to disperse PA6 in two forms: at high temperature in the molten state in molted PE‐GMA Matrix (emulsion type mixture) and at lower temperature as fillers in molted PEGMA matrix (suspension type mixture). Processed blends were analyzed by scanning electron microscopy and dynamic mechanical experiments to probe the reactivity in the extruder and the compatibilization phenomena. The dependence of the morphology and the rheological properties of PE‐GMA/PA6 blends on blend composition and screw rotational speed was also investigated and is discussed in the paper. The results show that dispersion of the two polymers in the molten state leads to a higher level of interfacial reaction. They also show that whatever the screw rotational speed and the temperature of extrusion are, the rate of interfacial reaction in PE‐GMA/PA6 blends is higher for 50/50 PE‐GMA/PA blends than for 70/30 PE‐GMA/PA blends. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A series of polyamide 6/polypropylene (PA6/PP) blends and nanocomposites containing 4 wt% of organophilic modified montmorillonite (MMT) were designed and prepared by melt compounding followed by injection molding. Maleic anhydride polyethylene octene elastomer (POEgMAH) was used as impact modifier as well as compatibilizer in the blend system. Three weight ratios of PA6/PP blends were prepared i.e. 80:20, 70:30, and 60:40. The mechanical properties of PA6/PP blends and nanocomposite were studied through flexural and impact properties. Scanning electron microscopy (SEM) was used to study the microstructure. The incorporation of 10 wt% POEgMAH into PA6/PP blends significantly increased the toughness with a corresponding reduction in strength and stiffness. However, on further addition of 4 wt% organoclay, the strength and modulus increased but with a sacrifice in impact strength. It was also found that the mechanical properties are a function of blend ratio with 70:30 PA6/PP having the highest impact strength, both for blends and nanocomposites. The morphological study revealed that within the blend ratio studied, the higher the PA6 content, the finer were the POEgMAH particles.  相似文献   

12.
This study investigates the processing of blends of polyamide 6 (PA6) and polyamide 12 (PA12) by selective laser sintering (SLS) using a CO2 laser. Powder properties of undiluted polymers, mixture composition, and processing parameters, as well as their influence on the microstructure of the specimens manufactured, were evaluated. Polyamides showed higher absorption of laser energy during the sintering of blend specimens, with subsequent thermal energy transfer to the melting of the polymeric phases. The structure of parts obtained by SLS is dependent on the process parameters and the characteristics of the powder material to be processed. The microstructures of PA6/PA12 blend specimens were heterogeneous, with co-continuous and disperse phases depending on the quantity of PA12. The porosity and crystallinity also changed as a function of the component proportions. The use of polymeric blends can increase the range of structures and properties of SLS parts.  相似文献   

13.
Blends obtained from polyamide 6 and a thermoplastic polyurethane compatibilized by diblock copolyurethaneamides were investigated by means of DMTA and DSC. The blends were prepared by compounding in a Brabender mixer. The compatibilizer affected the glass transition temperature of the amorphous phase of the blends. The non-isothermal crystallization temperature of the polyamide phase was lowered in the presence of the polyurethane and the copolyurethaneamide. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic modified montmorillonite (organoclay) were compatibilized with maleic anhydride-grafted ethylene-propylene rubber (EPRgMA). The blends were melt compounded in twin screw extruder followed by injection molding. The mechanical properties of PA6/PP nanocomposites were studied by tensile and flexural tests. The microstructure of the nanocomposite were assessed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The dynamic mechanical properties of the PA6/PP blend-based nanocomposites were analyzed by using a dynamic mechanical thermal analyzer (DMTA). The rheological properties were conducted from plate/plate rheometry via dynamic frequency sweep scans. The melt viscosity in a high shear rate region was performed by using a capillary rheometer. The strength and stiffness of the PA6/PP-based nanocomposites were improved significantly with the incorporation of EPRgMA. Adding EPRgMA to the PA6/PP blends resulted in a finer dispersion of the PP phase. TEM and XRD results revealed that the organoclay was dispersed more homogeneously in the presence of EPRgMA, however, mostly in the PA6 phase of the blends. DMTA results showed that EPRgMA worked as an effective compatibilizer. The storage (G′) and loss moduli (G″) assessed by plate/plate rheometry of PA6/PP blends increased with the incorporation of EPRgMA and organoclay. Furthermore, the apparent shear viscosity of the PA6/PP blend increased significantly for the EPRgMA compatibilized PA6/PP/organoclay nanocomposite. This was traced to the formation of an interphase between PA6 and PP (via PA6-g-EPR) and effective intercalation/exfoliation of the organoclay.  相似文献   

15.
Characterization of Rubber Epoxy Blends by Thermal Analysis   总被引:1,自引:0,他引:1  
Differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and dynamic mechanical analysis (DMA) of the blends ofepoxy cresol novolac (ECN) resin toughened with liquid carboxy terminated butadiene-co-acrylonitrile (CTBN) rubber have been carried out. Exothermal heat of reaction (ΔH) due to crosslinking of the resin in presence of diaminodiphenyl methane(DDM, as amine hardener) showed a decreasing trend with increasing rubber concentration. Enhancements of thermal stability as well as lower percentage mass loss of the epoxy-rubber blends with increasing rubber concentration have been observed in TG. Dynamic mechanical properties reflected a monotonic decrease in the storage modulus (E′) with increasing rubber content in the blends. The loss modulus (E″) and the loss tangent(tanδ) values, however, showed an increasing trend with rise of the temperature up to a maximum (peak) followed by a gradual fall in both cases. Addition of 10 mass% of CTBN resulted maximum E″ and tanδ. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The present investigation deals with the mechanical, thermal, and morphological properties of binary nylon 66/maleic anhydride grafted ethylene propylene rubber (EPR‐g‐MA) blends at different dispersed phase (EPR‐g‐MA) concentrations. The effects of EPR‐g‐MA concentration and dispersed particle size on the mechanical properties of the blends were studied. Analysis of the tensile data in terms of various theoretical models revealed the variation of stress concentration effect with blend composition and the improvement of interfacial adhesion between dispersed rubber phase and nylon 66 matrix. The thermal degradation of the blends was analyzed by nonisothermal thermogravimetric analysis (TGA). It was found that the activation energy (Ea) and overall reaction order of thermal degradation decreased with increasing EPR‐g‐MA content. The scanning electron microscopic (SEM) analysis showed a significant decrease in dispersed particle size with increasing EPR‐g‐MA content, which was explained on the basis of the level of chemical interaction (in situ compatibilization) between nylon 66 and EPR‐g‐MA. The surface morphology of the nylon 66/EPR‐g‐MA blends was illustrated by the roughness of atomic force microscopy (AFM) images. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The thermal oxidative stability and the effect of water on gas transport and mechanical properties of blends of polyamide 6 (PA6) with ethylene‐co‐vinyl alcohol (EVOH) and EVOH modified with carboxyl groups (EVOH‐COOH) have been investigated. The presence of EVOH reduces water vapor and oxygen gas permeability of polyamide, as well as small amounts of EVOH‐COOH further improve barrier properties, especially to oxygen. This has been explained in terms of improved interactions of the blend constituents in the amorphous phase, due to ionic linkages between the polyamide amino groups and the carboxyls of modified EVOH. The permeation to gases was found to increase with the amount of sorbed water. The morphology of the samples was found to have an effect on barrier properties, as the presence of EVOH causes the PA6 α crystalline form to increase, lowering the permeability to oxygen and water vapor. Mechanical properties are strongly affected by water sorption, as tensile modulus and strength decrease with increasing water content. Chemiluminescence (CL), infrared spectroscopy (FTIR), and tensile test were employed in order to assess the correlation between chemical composition and the thermal oxidative stability of the films aged at 110 °C in air. CL experiments suggest that the presence of EVOH and EVOH‐COOH efficiently inhibits the formation of peroxidized species during the processing, and increases the thermal oxidative stability of the films. Infrared spectroscopy showed a build‐up of carbonyl absorption in the range 1700–1780 cm?1, due to the formation of oxidation products, which is greater in the case of the pure polymer. Tensile tests on films revealed a reduction in ductility as a result of ageing for neat PA6, whereas in comparison the blends exhibit a far better long‐term stability. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 840–849, 2007  相似文献   

18.
用扫描电子显微镜图像分析研究了聚丙烯/聚酰胺1010共混物及其部分相容体系的相形态结构,计算了表征相结构和尺寸的结构参数,如分散相的平均直径、平均弦长和分散相的质心相关距等.并分别讨论了聚丙烯/聚酰胺1010共混物及其部分相容体系的相形态以及其结构参数与共混物组成的关系.测定了聚合物及其共混物体系的力学性能,讨论了共混物组成与力学性能的关系.聚丙烯/聚酰胺1010共混物的拉伸模量与组成的关系较为复杂,但其部分相容体系的拉伸模量与组成呈线性关系.聚丙烯/聚酰胺1010及其共混物体系的屈服强度与共混物组成均呈线性关系.表征相结构的两相平均弦长比(l-1/-l2)与组成以及共混物体系力学性能与组成的关系,二者相似.同时讨论了体系力学性能随相尺寸等的变化规律.  相似文献   

19.
The compatibilization effect of linear low‐density polyethylene‐grafted maleic anhydride (LLDPEgMA) and high‐density polyethylene‐grafted maleic anhydride (HDPEgMA) on high‐density polyethylene (HDPE)/polyamide 6 (Nylon 6) blend system is investigated. The morphology of 45 wt %/55 wt % polyethylene/Nylon 6 blends with three compatibilizer compositions (5 wt %, 10 wt %, and 15 wt %) are characterized by atomic force microscopic (AFM) phase imaging. The blend with 5 wt % LLDPEgMA demonstrates a Nylon 6 continuous, HDPE dispersed morphology. Increased amount of LLDPEgMA leads to sharp transition in morphology to HDPE continuous, Nylon 6 dispersed morphology. Whereas, increasing HDPEgMA concentration in the same blends results in gradual morphology transition from Nylon 6 continuous to co‐continuous morphology. The mechanical properties, oxygen permeability, and water vapor permeability are measured on the blends which confirm the morphology and indicate that HDPEgMA is a better compatibilizer than LLDPEgMA for the HDPE/Nylon 6 blend system. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 281–290  相似文献   

20.
In a previous paper the structure and the physical properties of melt mixed polyamide 66 (PA66)/polyamide 12 (PA12) blends characterized by different compositions have been investigated by means of morphological and physical analyses. A low amount of organically‐modified layered silicate (OMLS, 4 wt%) was introduced in order to evaluate its effect on blends structure and components miscibility. This paper completes the characterization of these materials investigating their thermal properties by means of standard and modulated differential scanning calorimetry (DSC, MDSC), dynamic‐mechanical analysis (DMA), and thermogravimetric analysis (TGA). The partial miscibility of PA66 and PA12, with phase separation depending on blend composition, has been confirmed by analyzing the glass transition temperature (Tg) dependence on composition as well as the existence of strong segmental interactions between polymer components. A compatibilizing action of OMLS has been observed because of a lowering of interfacial tension avoiding coalescence phenomena between particles during melt mixing process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号