首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The single-point ramped imaging with T1 enhancement (SPRITE) imaging technique has proven to be a very robust and flexible method for the study of a wide range of systems with short signal lifetimes. As a pure phase encoding technique, SPRITE is largely immune to image distortions generated by susceptibility variations, chemical shift and paramagnetic impurities. In addition, it avoids the line width restrictions on resolution common to time-based sampling, frequency encoding methods. The standard SPRITE technique is however a longitudinal steady-state imaging method; the image intensity is related to the longitudinal steady state, which not only decreases the signal-to-noise ratio, but also introduces many parameters into the image signal equation. A centric scan strategy for SPRITE removes the longitudinal steady state from the image intensity equation and increases the inherent image intensity. Two centric scan SPRITE methods, that is, Spiral-SPRITE and Conical-SPRITE, with fast acquisition and greatly reduced gradient duty cycle, are outlined. Multiple free induction decay (FID) points may be acquired during SPRITE sampling for signal averaging to increase signal-to-noise ratio or for T2* and spin density mapping without an increase in acquisition time. Experimental results show that most porous sedimentary rock and concrete samples have a single exponential T2* decay due to susceptibility difference-induced field distortion. Inhomogeneous broadening thus dominates, which suggests that spin density imaging can be easily obtained by SPRITE.  相似文献   

2.
Parameter sensitive MRI experiments were performed on tulip bulbs before and after storage at two different temperatures, 4 degrees C (chilled), and 20 degrees C (non-chilled). Quantitative measurements of the amount of magnetization transfer (MT) in the storage scales of the bulbs, were compared to the average values of the relaxation rates R(1) and R(2), and the apparent normalized spin density (NSD). At the end of the storage period, bulbs were also scanned using 1H double quantum (DQ) filtered imaging. Both MT and DQ filtered imaging revealed significant differences between chilled and non-chilled bulbs, which were consistent with the differences observed in the average values of NSD, R(1,) and R(2.) The results indicated a smaller fraction of solid protons (e.g., starch, sugars, and possibly bound water), or less contact between these solid protons and (free) water in the storage scales of the chilled bulbs, after 8 weeks of storage at low temperature.  相似文献   

3.
Application of the chirp z-transform to MRI data   总被引:1,自引:0,他引:1  
A version of the chirp z-transform (CZT) enabling signal intensity and phase-preserving field-of-view scaling has been programmed. The algorithm is important for all single-point imaging sequences such as SPRITE when used with multiple data acquisition for T2* mapping or signal averaging. CZT has particular utility for SPRITE imaging of nuclei with short relaxation times such as sodium at high field. Here, a complete theory of the properties of CZT is given. This method operates entirely in k-space. It is compared with a conventional interpolation approach that works in image space after the application of a fast Fourier transformation.  相似文献   

4.
Magnetic resonance imaging has rarely been applied to rigid polymeric materials, due primarily to the strong dipolar coupling and short signal lifetimes inherent in these materials. SPRITE (single point ramped imaging withT 1 enhancement) (B. J. Balcom, R. P. MacGregor, S. D. Beyea, D. P. Green, R. L. Armstrong, T. W. Bremner: J. Magn. Reson. A123, 131–134, 1996) is particularly well suited to imaging solid materials. With SPRITE, the only requirement is thatT 2* be long enough so that the signal can be phase-encoded. The minimum phase encoding time is limited by the maximum gradient strength available and by the instrument deadtime. At present this is usually tens of microseconds and will only improve with refinements in technology. We have used the SPRITE sequence in conjunction with raising the sample temperature to obtain images of rigid polymers that have largely frustrated conventional imaging methods. This approach provides a straightforward and reliable method for imaging a class of samples that, up until now, have been very difficult to image.  相似文献   

5.
The strength of signals in magnetic resonance imaging (and the resulting image contrast) depends not just on the number density of the nuclei being detected, but also on the relaxation times, T1 and T2. The relationship of signal strength to relaxation time depends on the particular choice of pulse sequences used to produce the signals. The effects of the T1 relaxation time on signal strength are discussed for the commonly used imaging techniques "partial saturation" and "inversion recovery." Production of spin echos and the effect of the T2 relaxation time on spin-echo signal strength are also discussed.  相似文献   

6.
Two strategies for the optimization of centric scan SPRITE (single point ramped imaging with T1 enhancement) magnetic resonance imaging techniques are presented. Point spread functions (PSF) for the centric scan SPRITE methodologies are numerically simulated, and the blurring manifested in a centric scan SPRITE image through PSF convolution is characterized. Optimal choices of imaging parameters and k-space sampling scheme are predicted to obtain maximum signal-to-noise ratio (SNR) while maintaining acceptable image resolution. The point spread function simulation predictions are verified experimentally. The acquisition of multiple FID points following each RF excitation is described and the use of the Chirp z-Transform algorithm for the scaling of field of view (FOV) of the reconstructed images is illustrated. Effective recombination of the rescaled images for SNR improvement and T*2 mapping is demonstrated.  相似文献   

7.
A technique for imaging materials with short transverse relaxation times and prepared longitudinal magnetization is proposed. The technique is single-point ramped imaging withT1-enhancement (SPRITE) MRI with centrick-space sampling. The effects of transient state behavior on image resolution and signal/noise are estimated. Centric sampling in the basic SPRITE sequence gives increased signal-to-noise and permits a quantitative determination of the MR parameters associated with longitudinal spin preparation. Spin-lock and inversion recovery preparation experiments are presented.  相似文献   

8.
An improved 3-D Look--Locker imaging method for T(1) parameter estimation   总被引:1,自引:0,他引:1  
The 3-D Look-Locker (LL) imaging method has been shown to be a highly efficient and accurate method for the volumetric mapping of the spin lattice relaxation time T(1). However, conventional 3-D LL imaging schemes are typically limited to small tip angle RF pulses (5 degrees ), thereby improving the SNR and the accuracy of the method. In phantom studies, a mean T(1) measurement accuracy of less than 2% (0.2-3.1%) using a tip angle of 10 degrees was obtained for a range of T(1) from approximately 300 to 1,700 ms with a measurement time increase of only 15%. This accuracy compares favorably with the conventional 3-D LL method that provided an accuracy between 2.2% and 7.3% using a 5 degrees flip angle.  相似文献   

9.
In vivo pelvic imaging of 39 women and in vitro relaxation time measurements of four uterine specimens were performed using an ultra low field (0.02 T) MRI unit. Average T1 times measured in vitro at 37 degrees C for the myometrium and endometrium were 206 ms (SD 47 ms) and 389 ms (SD 21 ms), respectively. Corresponding T2 times were 95 ms (SD 20 ms) and 167 ms (SD 13 ms). The proton relaxation of almost all myometrial specimens proved to be biexponential, but of all endometrial specimens was monoexponential. Contrast measurements between endometrium versus myometrium and myometrium versus the junctional zone were performed after imaging 18 volunteer women using different pulse sequence parameters. Normal uterine structures were optimally demonstrated by SE 700/70. Relatively short repetition times could be used, because spin-lattice relaxation times were short at the low magnetic field. Consequently, the short repetition times allowed averaging of four excitations to create adequate images within an acceptable scanning time. In addition to T2-weighted images a T1-weighted inversion recovery sequence with a short inversion time of 50 ms (IR 1000/50/40) adequately differentiated the three uterine zones. Although pathologic lesions of the uterus including leiomyomas, anomalies and carcinomas were well demonstrated, especially with the T2-weighted spin echo pulse sequence, further investigations are needed to evaluate the optimal technique for ultra low field MR imaging of uterine tumors.  相似文献   

10.
Sectoral sampling in centric-scan SPRITE magnetic resonance imaging   总被引:4,自引:4,他引:0  
A new approach to the construction of k-space trajectories for centric-scan SPRITE in both 2D and 3D is presented. All benefits of previous SPRITE methods are retained, most importantly the ability to image objects with short T*(2). This new approach gives more flexibility in the choice of number of interleaves with points more evenly distributed across k-space. All these improvements positively contribute to image quality and resolution, which can be also traded off against experimental speed. Sectoral sampling will have significant benefits for magnetisation preparation contrast imaging.  相似文献   

11.
The combination of contrast preparation with centric-scan SPRITE imaging readout is investigated. The main benefit of SPRITE, its ability to image objects with short T2, is retained. We demonstrate T1 and T2 mapping as examples of magnetisation preparation followed by magnetisation storage and spatially resolved encoding. A strategy for selection of the most advantageous imaging parameters for contrast mapping is presented.  相似文献   

12.
Gels consist of crosslinked polymer network swollen in solvent. The network of flexible long-chain molecules traps the liquid medium they are immersed in. Some gels undergo abrupt volume change, a phase transition process, by swelling-shrinking in response to external stimuli changes in solvent composition, temperature, pH, electric field, etc. We report that during volume phase transition changes of NMR longitudinal relaxation time T(1), NMR transverse relaxation time T(2), and diffusion coefficient D of the PMMA gel, and D of the NIPA gel. We describe how the gels were synthesized and the reason of using the snapshot FLASH imaging sequence to measure T(1), T(2), and D. Since T(1), T(2) and D maps have identical field of view and data are extracted from identical areas from their respective maps, these values can be correlated quantitatively on a pixel-by-pixel basis. Thus a complete set of NMR parameters is measured in-situ: the gels are in their natural state, immersed in the liquid, during the phase transition. The results of spectroscopic method agree with that of snapshot FLASH imaging method. For the PMMA gel T(1), T(2) and D decrease when gels undergo volume phase transition between deuterated acetone concentration of 30% and 40%. At its contracted state, T(1) is reduced to a little less than one order of magnitude, T(2) over two orders of magnitude, and D over one order of magnitude, smaller from values of PMMA gel at the swollen state. At an elevated temperature of 54 degrees C the thermosensitive NIPA gel is at a contracted state, with its D reduced to almost one order of magnitude smaller from that of the swollen NIPA at room temperature.  相似文献   

13.
Water distribution in thermally fractured granite samples was visualized by using SPRITE sequences. Networks of intergranular fractures were observed in the coarse-grained Inada granite after heating at 873 K or above. On the other hand, bright spots were observed in the fine-grained Okazaki granite, which may be due to pore water in feldspar grains. D2O diffusion into samples saturated with H2O was also observed by 2D-projected SPRITE imaging.  相似文献   

14.
Proton NMR longitudinal and transverse relaxation rates of unlabelled proteins are generally dominated by the many 1H-1H dipolar interactions so that spin diffusion, rather than molecular or internal motions, governs longitudinal relaxation. Here, relaxation measurements of backbone amide proton (1H(N)) magnetisations have been carried out employing the 99% 2H, 98% 15N labelled, small 2F2 protein domain in 10%/90% H(2)O/D(2)O solution. Under these conditions, the longitudinal relaxation rates exhibit time constants, T(1)*=1/R(1)* if described by a mono-exponential, within the range of 3.0 to 18.7s-a wide range which indicates that the phenomenon of spin diffusion has been greatly reduced. The majority of 1H(N) nuclei in this sample (pH 4.0 and 5 degrees C) exhibit chemical exchange with solvent that couples their longitudinal relaxation to that of the solvent. For the subset of 1H(N) nuclei not undergoing detectable solvent chemical exchange, the R(1)* rates correlate well with their individual 1H(N,O)/2H(N,O) structural environments. The correlation for corresponding transverse relaxation rates, R(2)* was found to be less good. Longitudinal relaxation measurements in 1%/99% H(2)O/D(2)O solution identify a further subset of 1H(N) nuclei which exhibit essentially indistinguishable R(1)* rates in both 1% and 10% H(2)O, implying that averaging of rates from spin diffusion processes and different 2F2 isotopomer populations are negligible for these 1H(N) sites. In addition to a high sensitivity to structural parameters, model calculations predict 1H(N) relaxation rates to exhibit pronounced sensitivity to internal dynamics.  相似文献   

15.
Magnetic relaxation in solids may be complicated by the creation and loss of dipolar order at finite rates. In tissues the molecular and spin dynamics may be significantly different because of the relatively high concentration of water. We have applied a modified Jeneer-Broekaert pulse sequence to measure dipolar relaxation rates in both dry and hydrated protein systems that may serve as magnetic models for tissue. In lyophilized and dry serum albumin, the dipolar relaxation time, T(1D) is on the order of 1 ms and is consistent with earlier reports. When hydrated by deuterium oxide, the dipolar relaxation times measured were on the order of tens of microseconds. When paramagnetic centers are included in the protein, the Jeneer-Broekaert echo decay times became the order of the decay time for transverse magnetization, i.e., the order of 10 micros or less. In the hydrated or paramagnetic systems, the dipolar relaxation times are too short to require inclusion in the quantitative analysis of magnetization transfer experiments.  相似文献   

16.
A magnetic resonance imaging method is presented for imaging of heterogeneous broad linewidth materials. This method allows for distortionless relaxation weighted imaging by obtaining multiple phase encoded k-space data points with each RF excitation pulse train. The use of this method, turbo spin echo single-point imaging-(turboSPI), leads to decreased imaging times compared to traditional constant-time imaging techniques, as well as the ability to introduce spin-spin relaxation contrast through the use of longer effective echo times. Imaging times in turboSPI are further decreased through the use of low flip angle steady-state excitation. Two-dimensional images of paramagnetic doped agarose phantoms were obtained, demonstrating the contrast and resolution characteristics of the sequence, and a method for both amplitude and phase deconvolution was demonstrated for use in high-resolution turboSPI imaging. Three-dimensional images of a partially water-saturated porous volcanic aggregate (T(2L) approximately 200 ms, Deltanu(1/2) approximately 2500 Hz) contained in a hardened white Portland cement matrix (T(2L) approximately 0.5 ms, Deltanu(1/2) approximately 2500 Hz) and a water-saturated quartz sand (T(2) approximately 300 ms, T(2)(*) approximately 800 microseconds) are shown.  相似文献   

17.
In the tilted rotating frame (TRF), the transverse relaxation time T(2rho) depends strongly on the orientation of TRF with respect to the usual rotating frame. In the spin space, the relative orientation of the two reference frames modifies the contribution of various spin interactions to T(2rho) relaxation. Since the orientation of the frames and, to some extent, the role of the spin Hamiltonians in TRF are controllable experimentally, the T(2rho) relaxation can be made sensitive to molecular mechanisms related to the selected spin interaction. In this paper, the realization of a contrast Hamiltonian-dependent in solid-state NMR Imaging is proved. The solid-state imaging approach is based on the magic angle in the rotating frame. Some results on simple solid polymers are presented.  相似文献   

18.
The use of chemical shift imaging for fat and water quantitation and differential measurement of relaxation times for the fat and water component is demonstrated using a hybrid technique. The efficacy of the imaging technique for fat and water quantitation has been tested by comparing the results of imaging to the results of volumetric measurements in phantoms with oil and water homogeneously mixed, fat extraction in ground meat of different grades, and biopsy in preliminary clinical studies. Good correlation is found between the fat and water content measured by imaging and that measured by other means except for the inability to differentiate unsaturated fat protons from water protons. Longitudinal (T1) and transverse (T2) relaxation times for water and fat are also shown to be measurable independently when fat and water signal are suppressed accordingly. The independently measured relaxation times correspond closely to those of the pure samples except that unsaturated protons give decreased water relaxation estimates.  相似文献   

19.
We study the mechanism of nuclear spin relaxation in quantum dots due to the electron exchange with the 2D gas. We show that the nuclear spin relaxation rate 1/T(1) is dramatically affected by the Coulomb blockade (CB) and can be controlled by gate voltage. In the case of strong spin-orbit (SO) coupling the relaxation rate is maximal in the CB valleys, whereas for the weak SO coupling the maximum of 1/T(1) is near the CB peaks.  相似文献   

20.
Low-temperature (4-55 K) pulsed EPR measurements were performed with the magnetic field directed along the z-axis of the g-factor of the low-symmetry octahedral complex [(63)Cu(L-aspartate)(2)(H2O)2] undergoing dynamic Jahn-Teller effect in diaqua(L-aspartate)Zn(II) hydrate single crystals. Spin-lattice relaxation time T(1) and phase memory time T(M) were determined by the electron spin echo (ESE) method. The relaxation rate 1/T(1) increases strongly over 5 decades in the temperature range 4-55 K. Various processes and mechanisms of T(1)-relaxation are discussed, and it is shown that the relaxation is governed mainly by Raman relaxation processes with the Debye temperature Theta(D)=204 K, with a detectable contribution from disorder in the doped Cu(2+) ions system below 12 K. An analytical approximation of the transport integral I(8) is given in temperature range T=0.025-10Theta(D) and applied for computer fitting procedures. Since the Jahn-Teller distorted configurations differ strongly in energy (delta(12)=240 cm(-1)), there is no influence of the classical vibronic dynamics mechanism on T(1). Dephasing of the ESE (phase relaxation) is governed by instantaneous diffusion and spectral diffusion below 20 K with resulting rigid lattice value 1/T(0)(M)=1.88 MHz. Above this temperature the relaxation rate 1/T(M) increases upon heating due to two mechanisms. The first is the phonon-controlled excitation to the first excited vibronic level of energy Delta=243 cm(-1), with subsequent tunneling to the neighbor potential well. This vibronic-type dynamics also produces a temperature-dependent broadening of lines in the ESEEM spectra. The second mechanism is produced by the spin-lattice relaxation. The increase in T(M) is described in terms of the spin packets forming inhomogeneously broadened EPR lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号