首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
On the refluxing ofM(II) oxalate (M=Mn, Co, Ni, Cu, Zn or Cd) and 2-ethanolamine in chloroform, the following complexes were obtained: MnC2O4·HOCH2CH2NH2·H2O, CoC2O4·2HOCH2CH2NH2, Ni2(C2O4)2·5HOCH2CH2NH2·3H2O, Cu2(C2O4)2·5HOCH2CH2NH2, Zn2(C2O4)2·5HOCH2CH2NH2·2H2O and Cd2(C2O4)2·HOCH2CH2NH2·2H2O. Following the reaction ofM(II) oxalate with 2-ethanolamine in the presence of ethanolammonium oxalate, a compound with the empirical formula ZnC2O4·HOCH2CH2NH2·2H2O1 was isolated. The complexes were identified by using elemental analysis, X-ray powder diffraction patterns, IR spectra, and thermogravimetric and differential thermal analysis. The IR spectra and X-ray powder diffraction patterns showed that the complexes obtained were not isostructural. Their thermal decompositions, in the temperature interval between 20 and about 900°C, also take place in different ways, mainly through the formation of different amine complexes. The DTA curves exhibit a number of thermal effects.  相似文献   

2.
Acetamidiniumhexafluorometallates of Aluminium, Gallium, Indium, Vanadium, Chromium, Manganese, Iron and Cobalt The title compounds were crystallized from F-containing aqueous solutions of their hexafluoro-metallate acids by adding acetamidine. Their unit cells were determined and the thermal decomposition was investigated thermoanalytically. The crystal structure of [CH3C(NH2)2]3AlF6 was determined: Space group P41212/P43212, a = 8,987(1), c = 17,894(3) Å, R = 0,054. The unit cell parameters: .  相似文献   

3.
4.
Quaternary Magnesium Iridium Borides Mg2XIr5B2 with X = Be, Al, Si, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As – a Substitution Variant of the Ti3Co5B2 Type of Structure The compounds Mg2XIr5B2 with X = Be, Al, Si, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge and As crystallize tetragonally with Z = 2 in the space group P4/mbm. The lattice constants are in the range a = 9.199 Å, c = 2.880 Å for Mg2BeIr5B2 und a = 9.406 Å, c = 2.953 Å for Mg2TiIr5B2 (further lattice constants are given in Table 1). X-ray structure determinations carried out with single crystals of the Si-and the P-compounds showed that a substitution variant of the Ti3Co5B2 type of structure is formed. According to X-ray powder photographs the other compounds are isotypic. In the compounds with X = P and As the X-siteset is only occupied at about 70% and 80% respectively.  相似文献   

5.
Methyl iodide reacts with Pt2(μ-SMe)2Ph2(PMe2Ph)2 to give PtIPh(SMe2)(PMe2Ph) and with Pt2(μ-SMe)2Me2(PMe2Ph)2 to give PtI2Me2(SMe2)(PMe2Ph) via an isolable intermediate Pt2I2(μ-SMe)2Me4(PMe2Ph)2. The mechanisms of the reactions are discussed.  相似文献   

6.
From measurements of the enthalpy of solution of metal salts of 3-nitro-1,2,4-triazol-5-one (NTO) in water, the standard enthalpies of formation of KNTO·H2O, Ba(NTO)2·3H2O, LiNTO·2H2O, Ca(NTO)2·4H2O and Gd(NTO)3·7H2O were determined as ?(676.9±2.6), ?(1627.0±2.5), ?(966.6.3±2.2), ?(1905.5±4.4) and ?(3020.1±6.4) kJ·mol?1, respectively. From measurements of the enthalpy of precipitation of KNTO·H2O crystal with Pb(NO3)2(aq), CuSO4(aq) and Zn(NO3)2(aq), the standard enthalpies of formation of Pb(NTO)2·H2O, Cu(NTO)2·2H2O and Zn(NTO)2·H2O were determined as ?(247.4±5.9), ?(712.1±5.4) and ?(628.8±5.7) kJ·mol?1, respectively.  相似文献   

7.
The literature known, but not fully characterized, silver dinitramide transfer reagents AgN(NO2)2 ( 1 ), [Ag(NCCH3)][N(NO2)2] ( 2 ), and [Ag(py)2][N(NO2)2] ( 3 ) have been investigated by 109Ag, 14N NMR and vibrational spectroscopy (IR, Raman). In addition, the poorly understood [Cu(NH3)4][N(NO2)2)]2 ( 4 ) and [Pd(NH3)4][N(NO2)2]2, ( 5 ) have also been prepared and characterized by 14N NMR and vibrational spectroscopy (IR, Raman). The structures of 2 — 5 have also been determined by X‐ray diffraction.  相似文献   

8.
Single-atom-catalyst-based systems have been attractive by virtue of their desirable catalytic performance. Herein, the possibility of the 15 transition-metal (TM)-promoted (TM=Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Cd, Os, Ir, Pt, Au, and Hg) and their hydrogen evolution reaction (HER) performance were investigated on two-dimensional titanium carbides (TiC2). It is found that the adsorption strength of TMs on TiC2 is stronger than that of TMs on γ-graphyne and weaker than that of TMs on Ti3C2. Among the fifteen investigated catalysts, Ru−TiC2, Ag−TiC2, Ir−TiC2, Au−TiC2, and Fe−TiC2 exhibits overpotential of −0.18, −0.15, −0.18, −0.17, and −0.04 V, respectively. In addition, the Volmer-Tafel step was preferred to the Volmer-Heyrovsky step on Fe−TiC2. This work suggests that Fe−TiC2 is possibly a superior HER electrocatalyst.  相似文献   

9.
The Chemical Transport of Cu, Ag, Au, Ru, Rh, Pd, Os, Ir, Pt in the Presence of Al2Cl6, Fe2Cl6 or Al2I6, Causing Complex Formation Chemical transport experiments show, that the title elements (with exception of Os) in the presence of halide forming agents (HCl, Cl2 or I2 resp.) and of complex forming agents (Al2Cl6, Fe2Cl6 or Al2I6 resp.) give gaseous complex compounds with a remarkable stability. This leads to novel possibilities for the chemical transport of the elements and their compounds. The effect of complex formation can be predicted on the basis of qualitative thermodynamic considerations. The corrosion of the wall of the quartz ampoule at temperatures above 600°C by Al2Cl6/AlCl3 is avoidable by the usage of Fe2Cl6/FeCl3 instead of Al2Cl6/AlCl3. Experiments in the system Pd/I2, Al2I6 lead to the formation of crystals of Pd2Al.  相似文献   

10.
Reactions of element-substituted alkynes R3MCCPh (R3M = Me3Si, Et3Si, Ph3Si, Et3Ge, n-Bu3Sn, N(CH2CH2O)3Si, N(CH2CH2O)3Ge, N(CH2-CHMeO)3Ge, and N(CH2CH2O)2(CH2CHPhO)Ge) with bromine, tetra-n-butylammonium tribromide (TBAT), and N-bromosuccinimide (NBS)/DMSO were investigated. The Z,E-ratio of isomeric dibromoalkenes formed in bromination reaction with Br2 and TBAT are discussed. The crystal structures of N(CH2CH2O)3SiCCPh and N(CH2CHMeO)3GeX (X = C CPh, C(Br)C(Br)Ph, C(Br2)C(O)Ph), and Ph3SiC(Br)C(Br)Ph are reported. © 2003 Wiley Periodicals, Inc. 15:43–56, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/.hc10211  相似文献   

11.
Abstract

Reactions of a series of binuclear, phosphine bridged late transition metal complexes, Pd2Cl2(dppm)2, Pd2Cl2(dmpm)2, Pd2Cl2(Ph2Ppy)2, Pt2Cl2(dppm)2, and Ag2Br2(dppm)2, with Me3SiX (X = Br, I), Me3GeBr and Me3SnBr were examined by 31P NMR spectroscopy. Rapid exchange of Pd-Cl, Pt-Cl and Ag-Br bonds for Pd-X, Pt-X (X = Br, I) and Ag-I bonds was observed to be independent of the nature of the phosphine ligand, the nature of the metal center or the group IV element. Differences in Lewis acidity of the transition metal center as a function of the ligands and the identity of the transition metal and differences in the basicity of the Me3EBr ligands are proposed to account for the failure to detect intermediates in these reactions similar to those reported for reactions between Pd2Cl2(dppm)2 and Me3SiX.  相似文献   

12.
Potassium diphthalocyaninato(2–)metallate(III), K[M(pc2–)2] (M = Bi, La, Ce, Pr, Sm, Sb, In) has been prepared by melting the metal chloride, iodide or acetate with 1,2‐dicyanobenzene in the presence of potassium methylate. Crystallisation with tetra(n‐butyl)ammonium bromide or hydroxide ((nBu4N)Br/OH), tetra(n‐pentyl)ammonium chloride ((nPe4N)Cl) or bis(triphenylphosphine)iminium halide ((PNP)X; X = Br, I) yields the corresponding red‐purple complex salt (nBu4N)[M(pc2–)2] (M = Bi ( 1 ), La ( 3 ), Ce ( 2 )), (nBu4N)[M(pc2–)2] · x CH3OH (M = Bi ( 5 ), Pr ( 6 ), Sm ( 7 ); 0 9 x 9 1), (nPe4N)[La(pc2–)2] ( 4 ), (nBu4N)[Pr(pc2–)2] · 2 py ( 10 ), (nBu4N)[Sb(pc2–)2] · 2 thf ( 11 ), (PNP)2[M(pc2–)2]Br · 2 Et2O (M = Sb ( 12 ), Bi ( 13 )), and (PNP)2[In(pc2–)2]I · 2 Et2O ( 14 ). Bronze coloured diphthalocyaninato(1–)metal(III) polyiodide, [M(pc)2]I2 (M = Sc, Y) has been prepared similarly in the presence of ammonium iodide. Reduction with (nBu4N)OH provides (nBu4N)[M(pc2–)2] · x CH3OH (M = Y ( 8 ), Sc ( 9 ); 0 9 x 9 1). Spectral properties (UV/VIS/NIR; IR; resonance Raman) of diphthalocyaninates in their different ring oxidation states (2–/2–; 2–/1–; 1–/1–) are discussed. 1 – 3 crystallise in the tetragonal (P4/ncc), 5 – 9 in the orthorhombic (Pna21), 10 , 11 in the triclinic (P‐1), and 4 , 12 – 14 in the monoclinic crystal system ( 4 : P21/m; 12 : C2/c; 13 , 14 : P2/c). Ecliptic rotamers with skew angles ranging from 4.1° to 6.0° are found in 1 – 3 , and staggered rotamers with skew angles ranging from 35.8° to 45.0° are found in 4 – 14 . The mean M–Ni bond lengths and interplanar distances increase monotonically with the ionic radius of the metal ion. Both distances deviate notably from this linear correlation in the SbIII and BiIII derivatives. The discrepancy is presumably due to the sterical dominance of the ns2 lone‐pair character. The actual size of eight co‐ordinated SbIII and BiIII is estimated to be R8 ≈ 1.02(Sb)/1.11(Bi) Å. In every complex salt, the pc ligand is severely distorted from planarity and can adopt domed, saddled, waved and mixed non‐planar conformations; the crystal symmetry is the most important factor for the conformational heterogeneity.  相似文献   

13.
Three complexes based on fluconazole, namely, {[Co2(HFlu)(dpa)2(H2O)2]·H2O}n (1), {[Zn(HFlu)(IPA)]·H2O}n (2), and {[Mn(HFlu)2(IPA)(H2O)]·H2O}n (3) (HFlu?=?fluconazole, 2-(2,4-difluoro-phenyl)-1,3-bis(1,2,4-triazol-1-yl)-propan-2-ol; H2dpa?=?diphenic acid; H2IPA?=?isophthalic acid) have been synthesized. Single-crystal X-ray analysis revealed that 1 is a 2-D-network framework containing a trinuclear Co(II) unit, 2 is a 3-D framework, and 3 is 1-D double chain structure with a Mn2 metallocyclic core. The complexes have also been characterized by elemental analyses, IR, UV/vis and fluorescence spectroscopy, and thermal gravimetry. The phase purity of these polymers has been confirmed via powder X-ray diffraction.  相似文献   

14.
New rare-earth cymantrenecarboxylate complexes [Ln2(μ,η2-O2CCym)22-O2CCym)2-(η2-O2CCym)2(DMSO)4] (Cym = (η5-C5H4)Mn(CO)3, Ln = Ce (1), Nd (2), Eu (3), Gd (4)) were synthesized and characterized by X-ray diffraction. In dimeric structures 1–4, two of four bridging carboxylates are chelating-bridging, and Ln atoms have coordination number 9. The catalytic activity of complex 2 in the polymerization of 2,3-dimethyl-1,3-butadiene was investigated. The thermal decomposition of the synthesized compounds was studied by DSC and TGA. According to the X-ray powder diffraction data, the final thermal decomposition product of 1 in air consists of CeO2 and Mn3O4. Under the same conditions, complexes 2–4 afford mixtures of LnMn2O5 and Mn2O3.  相似文献   

15.
The crystal and molecular structures of the [PrIII(nta)(H2O)2]·H2O (nta = nitrilotriacetic acids), K3[GdIII(nta)2(H2O)]·6H2O, and K3[YbIII(nta)2]·5H2O complexes have been determined by single-crystal X-ray structure analyses. In [PrIII(nta)(H2O)2]·H2O, the PrIIINO8 part forms a nine-coordinate pseudo-monocapped square antiprismatic structure in which one N and three O atoms are from one nta ligand in the same molecule, three O atoms from another nta ligand in the neighboring molecule and two O atoms from two coordinate water molecules. In K3[GdIII(nta)2(H2O)]·6H2O, the [GdIII(nta)2(H2O)3- complex anion has a nine-coordinate pseudo-monocapped square antiprismatic structure in which each nta acts as a tetradentate ligand with one N atom of the amino group and three O atoms of the carboxylic groups. In K3[YbIII(nta)2]·5H2O, each nta also acts as a tetradentate ligand with one N atom of amino group and three O atoms of the carboxylic groups, but the [YbIII(nta)2 3- complex anion has an eight-coordinate structure with a distorted square antiprismatic prism. All the results including those for [TmIII(nta)(H2O)2]·2H2O confirm the inferences on the coordinate structures and coordination numbers of rare earth metal complexes with the nta ligand.  相似文献   

16.
Polynuclear Pd(II) and Ni(II) complexes of macrocyclic polyamine 3,6,9,16,19,22‐hexaazatricyclo[22.2.2.211,14]‐triaconta 11,13,24,26(l),27,29‐hexaene (L) in solution were investigated by electrospray ionization mass spectrometry (ESIMS). For methanol solution of complexes M2LX4 (M = Pd(II) and Ni(II), X= Cl and I), two main clusters of peaks were observed which can be assigned to [M2LX3]+ and [M2LX2]2+. When Pd2LCl4 was treated with 2 or 4 mol of AgNO3, it gave rise formation of Pd2LCl2 (NO3)2 · H2O and [Pd2L(H2O)m(NO3)n](4‐n)+, respectively. ESMS spectra show that the dissociation of the former in the ionization process gave peaks of [Pd2LCl2]2+ and [(Pd2LCl2)NO3]+, while dissociation of the later gave the peaks of [Pd2L(CH3CO2)2]2+ and [Pd2L(CH3CO2)2](NO3) + in the presence of acetic acid. Similar species were observed for Pd2LI4 when treated with 4 mol of AgNO3. When [Pd2L · (H2O)m(NO3)n](4‐n)+ reacted with 2 mol of oxalate anions at 40°C, [Pd4L2(C2O4)2(NO3)2]2+ and [Pd4L2(C2O4)2 (NO3)]3+ were detected. This implies the formation of square‐planar molecular box Pd4L2(C2O4)2(NO3)4 in which C2O4? may act as bridging ligands as confirmed by crystal structure analysis. The dissociation form and the stability of complex cations in gaseous state are also discussed. This work provides an excellent example of the usefulness of ESIMS in the identification of metal complexes in solution.  相似文献   

17.
Dehydrohalogenation and metallation of boranato-bis-trimethylphosphonium salts (1), using two equivalents of a lithiumalkyl in tetrahydrofuran, leads to a solvated organolithium reagent H2B[(CH3)2PCH2]2Li (3) which can be converted into a 1:1n1-complex with tetramethylethylenediamin (4).3 reacts with anhydrous metal(II) halides to form spirocyclic coordination compounds of the type H2B[(CH3)2PCH2]2 M[CH2P(CH3)2]2BH2 (5–9,M=Be, Mg, Zn, Cd, Hg). The reaction of [(CH3)3PBH2P(CH3)3]Br (1) with lithium tetramethylmetalates Li[M(CH3)4],M=Al, Ga, on heating in the absence of a solvent affords the metallocycles H2B[(CH3)2PCH2]2 M(CH3)2 (10, 11) with evolution of methane. The products can be sublimed from the reaction mixture. The proposed structures of the new compounds, with tetrahedrally coordinated central atoms and strong covalent metal-carbon interactions, are supported by mass, IR and1H,7Li,11B,13C, and31P NMR spectra. Compound9 represents a rare case of a tetracoordinate organomercurial, compound5 is the first nonionic tetraalkylberyllate.
  相似文献   

18.
Density functional calculations on XYYX and X2YY isomers of the X2Y2 species (X: H, Li, Na, F, Cl, Br, I; Y: O, S, Se, Te) show that the XYYX isomers are more stable than the X2YY forms except for X = F and Y = S and Te, for which the F2SS and F2TeTe isomers are slightly more stable.  相似文献   

19.
Organometallic Compounds of the Lanthanides. 133 Synthesis and Characterization of donor-functionalised ansa -Metallocenes of Yttrium, Neodymium, Samarium, Erbium, and Lutetium The reaction of Me2SiCl2 with K[C5H4tBu], Li[C5H4SiMe3] or K[C5H3tBuMe-3] followed by treatment with K[C5H4CH2CH2NMe2] yields mixed substituted dicyclopentadienyldimethylsilanes which after double deprotonation with KH afford the dipotassium salts K2[Me2Si(C5H3tBu-3)(C5H3CH2CH2NMe2-3)] ( 1 ), K2[Me2Si · (C5H3SiMe3-3)(C5H3CH2CH2NMe2-3)] ( 2 ), and K2[Me2Si · (C5H2tBu-3-Me-5)(C5H3CH2CH2NMe2-3)] ( 3 ), respectively. The reaction of 1 , 2 , or 3 with LnCl3(THF)x (Ln = Y, La, Nd, Sm, Er, Lu) leads to the complexes [Me2Si(C5H3tBu-3) · (C5H3CH2CH2NMe2-3)]LnCl [Ln = Y ( 4 a ), Sm ( 4 c ), Lu ( 4 e )], [Me2Si(C5H3SiMe3-3)(C5H3CH2CH2NMe2-3)]LnCl [Ln = Y ( 5 a ), Sm ( 5 c ), Lu ( 5 e )], and [Me2Si(C5H2tBu-3-Me-5)(C5H3CH2CH2NMe2-3)]LnCl [Ln = Y ( 6 a ), Nd ( 6 b ), Sm ( 6 c ), Er ( 6 d ), Lu ( 6 e )], respectively. Alkylation of 4 a , 4 c , 5 a , and 6 b , 6 e with LiCH3, LiCH2SiMe3, and LiCH(SiMe3)2 produces the alkylmetallocenes [Me2Si(C5H3tBu-3) · (C5H3CH2CH2NMe2-3)]LnR [R = CH3, Ln = Y ( 7 a ), Sm ( 7 c ); R = CH2SiMe3, Ln = Y ( 8 a )], [Me2Si(C5H3SiMe3-3) · (C5H3CH2CH2NMe2-3)]YCH3 ( 9 a ), and [Me2Si(C5H2tBu3-Me-5)(C5H3CH2CH2NMe2-3)]LnR (R = CH3, Ln = Lu ( 10 e ); R = CH2SiMe3, Ln = Lu ( 11 e ); R = CH(SiMe3)2, Ln = Nd ( 12 b ), Lu ( 12 e )], respectively. All new compounds were characterized by elemental analyses, NMR spectroscopy and mass spectrometry. The molecular structure of 6 c and 6 e was determined by single crystal X-ray structure analysis.  相似文献   

20.
New Syntheses and Crystal Structures of Bis(fluorophenyl) Mercury, Hg(Rf)2 (Rf = C6F5, 2, 3, 4, 6‐F4C6H, 2, 3, 5, 6‐F4C6H, 2, 4, 6‐F3C6H2, 2, 6‐F2C6H3) Bis(fluorophenyl) mercury compounds, Hg(Rf)2 (Rf = C6F5, C6HF4, C6H2F3, C6H3F2), are prepared in good yields by the reactions of HgF2 with Me3SiRf. The crystal structures of Hg(2, 3, 4, 6‐F4C6H)2 (monoclinic, P21/n), Hg(2, 3, 5, 6‐F4C6H)2 (monoclinic, C2/m), Hg(2, 4, 6‐F3C6H2)2 (monoclinic, P21/c) and Hg(2, 6‐F2C6H3)2 (triclinic, P1) are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号