首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activities of metal oxide CuO, SnO2, CoO, Ag2O, ZnO or noble metal Pt, Pd, Rh-doped In2O3/Al2O3 catalysts for selective catalytic reduction of NO by propene were investigated. The temperature windows for NO reduction over noble metal-doped In2O3/Al2O3 catalysts were shifted and broaden slightly compared with single component catalyst alone. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Summary Transformation of n-hexane over Al2O3and SiO2supported Pt, Pt+Ga and Ir+Pt+Ga catalysts was studied in a continuous-flow reactor operated under slug-pulse mode at 520°C. Bimetallic catalysts were prepared by introducing first Ga(OEt)3and then diallylplatinum as precursor compounds. Iridium was then introduced viadecomposition of Ir4(CO)12adsorbed onto Pt+Ga catalysts. The addition of Ga to Pt/SiO2catalyst decreased hydrogenation, aromatization and hydrogenolysis selectivity. Over Pt/Al2O3catalyst Ga increased hydrogenolysis selectivity and decreased isomerization and C5-cyclization. The main effect of Ir was to increase hydrogenolysis selectivity and the stability of catalysts.</o:p>  相似文献   

3.
The acidic and hydrogenating of Pt/SO42−-ZrO2-Al2O3 samples containing from 18.8 to 67.8 wt % Al2O3 as a support constituent were studied by the IR spectroscopy of adsorbed CO and pyridine, and the model reactions of n-heptane and cyclohexane isomerization on these catalysts were examined. The total catalyst activity in the conversion of n-heptane decreased with the concentration of Al2O3; this manifested itself in an increase in the temperature of 50% n-heptane conversion from 112 to 266°C and in an increase in the selectivity of isomerization to 94.2%. In this case, the maximum yield of isoheptanes was 47.1 wt %, which was reached on a sample whose support contained 67.8 wt % Al2O3. A maximum yield (69.6 wt %) and selectivity (93.7%) for methylcyclopentane formation from cyclohexane were also reached on the above catalyst sample. This can be explained by lower concentrations of Lewis and Br?nsted acid sites in the Pt/SO42−-ZrO2-Al2O3 system, as compared with those in Pt/SO42−-ZrO2. The experimental results allowed us to make a preliminary conclusion that the Pt/SO42−-ZrO2-Al2O3 catalyst whose support contains 67.8 wt % Al2O3 is promising for use in the selective hydroisomerization of benzene-containing gasoline fractions in the thermodynamically favorable process temperature range of 250–300°C.  相似文献   

4.
研究了Ce改性的Pt/γ-AlO3对于富氢气氛下CO选择氧化反应的催化行为考察了制备条件(共沉积沉淀法、分步沉积沉淀法以及沉积沉淀温度)对催化活性的影响.结果表明,在80℃时用共沉积沉淀方法制备的催化剂Pt/γ-AlO3-CP-80对CO氧化反应表现出良好的活性和选择性,CO转化率在120℃时可以达到85%.利用氢气程序升温还原和原位漫反射红外光谱对不同条件下制备的催化剂进行了表征,分析了Cc的促进作用.  相似文献   

5.
宋华  董鹏飞  张旭 《物理化学学报》2010,26(8):2229-2234
通过向SO2-4 /ZrO2催化剂中同时引入适量的Pt和Al2O3, 制备出了具有较高催化性能和稳定性的Pt-SO2-4 /ZrO2-Al2O3型固体超强酸催化剂. 以正戊烷异构化反应为探针, 考察了Al含量对催化剂性能的影响; 并采用X射线衍射(XRD)、比表面积测定(BET)、红外(IR)光谱、程序升温还原(TPR)、热重-差热分析(TG-DTA)和氨-程序升温脱附(NH3-TPD)手段对催化剂进行了表征. 结果表明, Al能够提高ZrO2的晶化温度, 抑制硫的分解, 增加催化剂的比表面积, 增强硫氧键的结合, 提高催化剂的还原性能, 增加催化剂的酸强度和酸总量. 当Al2O3含量(质量分数, w)为5.0%时, Pt-SO2-4 /ZrO2-Al2O3固体超强酸催化剂的催化活性最好, 在100 h内异戊烷收率可稳定在52.0%以上, 选择性在98.2%以上.  相似文献   

6.
利用沉积沉淀法制备了Pt/TiO2催化剂, 将其在不同温度下焙烧, 以得到不同颗粒尺寸的Pt. 并将这些样品用于CO催化氧化反应以及反应动力学研究. 结果表明: 焙烧温度对催化剂有明显影响, Pt 颗粒尺寸随着焙烧温度的升高而增加; 与此同时, CO催化活性随焙烧温度的升高呈先增加后降低的趋势, 其中, 400℃焙烧的样品表现出最高的催化活性. 反应动力学结果表明, 催化剂上CO氧化反应表观速率方程为r=5.4×10-7pCO0.17pO20.36,说明在该催化剂上CO氧化遵循Langmuir-Hinshelwood机理. 同时, 对催化剂进行了CO化学吸附红外光谱和O2化学吸附表征. 结果表明, 随着焙烧温度的升高, 催化剂上CO和O2吸附量均呈现先升高后降低的趋势, 这与反应结果和反应动力学方程一致, 说明反应受到催化剂表面上CO和O2吸附浓度的影响. 而在400℃焙烧的催化剂上, CO和O2吸附量均最高, 因此其反应活性也最好. 这可能是焙烧过程影响了Pt 和TiO2之间的相互作用引起的.  相似文献   

7.
采用多步法依次将制备的Fe3O4纳米颗粒和Pt纳米颗粒负载到多壁碳纳米管(MCNT)上得到Pt/Fe3O4-MCNT磁性催化剂,以X射线衍射(XRD)、透射电镜(TEM)、超导量子干涉磁强计(SQUID)和热重-差热分析(TG-DTA)对Pt/Fe3O4-MCNT磁性催化剂的结构和磁性质进行了表征。研究发现预制备的Fe3O4纳米颗粒与Pt纳米颗粒均匀地分散于MCNT上,新制备以及多次使用后的Pt/Fe3O4-MCNT室温下都具有良好的超顺磁性。研究了Pt/Fe3O4-MCNT磁性催化剂上的肉桂醛选择性加氢反应,结果显示催化剂具有良好的C=O加氢活性,肉桂醛转化率在50%左右时,肉桂醇选择性可达96%以上。尺寸均一的Pt粒子均匀的分散在催化剂上可能是催化剂具有良好的C=O加氢选择性的重要原因。在外加磁场作用下催化剂可以高效地从液相反应体系中分离,经多次循环使用后仍具有良好的催化性能。  相似文献   

8.
Pt LIII-edge XANES and EXAFS were employed to investigate the nature of Pt/γ-Al2O3, Pt−Sn/γ-Al2O3 and Pt−Fe/γ-Al2O3 catalysts. The results indicated that Pt species on these catalysts were all in the oxidized states before reduction, and in the metallic states after reduction. The dispersity of the Pt species on the catalysts was very high after reduction. The electronic properties of the highly dispersed Pt species were different from that of the bulk Pt in large crystallites. An interaction between Pt and the metal-oxide modified γ-Al2O3 support is proposed. The interaction improved the dispersity of the Pt species on the catalysts and is thought to be the reason for the enhanced activity and selectivity for dehydrogenation reactions over these catalysts.  相似文献   

9.
我们研究了4种负载型Pt催化剂(1Pt/NiO、1Pt/FeOx、1Pt/Co3O4和Pt/CeO2)上不同反应条件下CO氧化活性及抗H2O和CO2性能.发现反应气氛中CO2的加入与CO形成了竞争吸附,并在催化剂表面形成了碳酸盐物种堵塞了活性位,从而导致催化剂失活.反应气氛中H2O的加入对1Pt/CeO2催化剂的活性有所抑制,但对1Pt/FeOx、1Pt/NiO和1Pt/Co3O4催化剂的活性却有促进作用.在1Pt/FeOx和1Pt/CeO2催化剂上的分步反应实验和动力学研究表明,尽管H2O的加入在两种催化剂上均与CO形成了竞争吸附,但在1Pt/FeOx催化剂上H2O在载体表面解离形成的羟基更易与CO反应,开辟了新的反应途径,从而提高了反应性能.此外,H2O的加入能有效分解该催化剂上的碳酸盐物种,从而保持了其稳定性.  相似文献   

10.
The Pt/Al2O3, Sn/Al2O3catalysts were prepared by the single sol-gel method. The two-stage Sn/Al2O3and Pt/Al2O3catalyst in series for NO reduction with propene were investigated. The coexistance of water vapor enhanced the activity at medium temperature of 300-400oC, and the NO conversion was above 50% at 225 to 500oC even in the presence of water vapor and SO2. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Cellulose is cracked over supported Pt or Ru catalysts under hydrogenolysis conditions in water to give sorbitol as a main product. Among the catalysts tested, Pt/γ-Al2O3 gave the highest yield and selectivity, and this catalyst was recyclable in repeated runs. It is proposed that cellulose is hydrolyzed by in situ generated acid sites to form glucose, and glucose is immediately reduced to sorbitol over the metal catalyst.  相似文献   

12.
利用等体积浸渍法制备了M-Pd/TS-1(M=Ce,La,Pt,Fe,Co,Ni,Cr,Mn,Zn,Cd,Cu)系列催化剂,并将制得的催化剂用于常压下氢、氧直接合成过氧化氢的反应。考察了M的类型及负载量对M-Pd/TS-1催化剂催化性能的影响。结果表明,M选Ce时,催化剂的性能最好。Ce的最佳掺入量,n_(Ce)/(n_(Ce)+n_(Pd))=0.5%。对Ce改性与未改性的催化剂进行了TEM及静态化学吸附分析,结果表明,掺入Ce可使Pd在TS-1分子筛表面的粒度及分散度得到改善。考察了n_(O_2)/n_(H_2)比,气体流量,反应时间等反应条件对H_2转化率、H_2O_2选择性及收率的影响。在相对优化的工艺条件下,即n_(O_2)/n_(H_2)=3,气体流量为25 mL·min~(-1),反应时间为3 h时,H_2O_2,的收率可达到25.7%,TOF值为18.7 mol·mol~(-1)·h~(-1),此时溶液中H_2O_2的质量百分数为0.8%。  相似文献   

13.
Pt‐Co/Al2O2 catalyst has been studied for CO2 reforming of CH4 to synthesis gas. It was found that the catalytic performance of me catalyst was sensitive to calcination temperature. When Co/Al2O3 was calcined at 1473 K prior to adding a small amount of Pt to it, the resulting bimetallic catalyst showed high activity, optimal stability and excellent resistance to carbon deposition, which was more effective to the reaction than Co/Al2O3 and Pt/Al2O3 catalysts. At lower metal loading, catalyst activity decreased in the following order: Pt‐Co/ Al2O3 > Pt/Al2O3 > Co/Al2O3. With 9% Co, the Co/Al2O3 calcined at 923 K was also active for CO2 reforming of CH4, however, its carbon formation was much more fast man that of the Pt‐Co/Al2O3 catalyst. The XRD results indicated that Pt species well dispersed over the bimetallic catalyst. Its high dispersion was related to the presence of CoAl2O4, formed during calcining of Co/Al2O3 at high temperature before Pt addition. Promoted by Pt, Co/Al2O4 in the catalyst could be reduced partially even at 923 K, the temperature of pre‐reduction for the reaction, confirmed by TPR. Based on these results, it was considered that the zerovalent platinum with high dispersion over the catalyst surface and the zerovalent cobalt resulting from Co/Al2O4 reduction are responsible for high activity of the Pt‐Co/Al2O3 catalyst, and the remain Co/Al2O4 is beneficial to suppression of carbon deposition over the catalyst.  相似文献   

14.
Selective hydrogenation of substituted nitroaromatic compounds is an extremely important and challenging reaction. Supported metal catalysts attract much attention in this reaction because the properties of metal nanoparticles (NPs) can be modified by the nature of the support. Herein, the support morphology on the catalytic performance of selective hydrogenation of 3-nitrostyrene to 3-vinylaniline was investigated. Pt NPs supported on octadecahedral α-Fe2O3 supports with a truncated hexagonal bipyramid shape (Pt/α-Fe2O3-O) and rod-shaped α-Fe2O3 supports (Pt/α-Fe2O3-R) were prepared by glycol reduction method. Detailed characterizations reveal that the electronic structure and dispersion of Pt NPs can be modified by the supports. The Pt/α-Fe2O3-O catalyst exhibited superior catalytic performance for hydrogenation of 3-nitrostyrene because of its low coordinated Pt sites and the small Pt NPs size, which is benefit from the high-index exposed surfaces of truncated hexagonal bipyramid-shaped α-Fe2O3 support. The structural evolution during the catalytic reaction was investigated in detail by identical location transmission electron microscopy (IL-TEM) method, which found that the high cycling activity of Pt/α-Fe2O3-O catalyst during the cycle experiment results from the stability of Pt NPs.  相似文献   

15.
A study of the alkylation of 3% Re2O7/60%Al2O3-40%SiO2 catalyst using tetraethyllead (Et4Pb)(TEL) shows that the reaction time and temperature affect the catalyst activity and selectivity in the methyl erucate metathesis reaction. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
For fresh and aged Pt/Al2O3 catalysts, TPD of oxygen is fairly well related to the noble metal surface areas and to the catalytic activity in butane combustion, whereas for aged Pt/Ba−Al2O3 solids, the catalytic activity is still preserved despite a tremendous sintering of the metallic phase and seems to be connected to a surface barium superoxide.  相似文献   

17.

Abstract  

Impregnated Cu–Zn over Al2O3 exhibits high activity with the use of a lower amount of active metal relative to conventional co-precipitation catalysts. The activity of the catalyst could be enhanced by addition of urea to the metal salt solution during impregnation. The H2 yield from Cu–Zn catalysts with urea is 42%, while the H2 yield from catalyst without urea is only 28% in a continuous system at 250 °C and 1.2 atm. The H2 yield of the catalyst with urea in this study could compete with that of commercial catalysts. The role of urea in the Cu–Zn catalysts was investigated. X-ray diffraction (XRD) analysis of the catalysts shows that the crystal size of CuO could be reduced by the addition of urea. The XRD diffractogram of the catalyst prior to calcination also shows the formation of NH4NO3, which could aid in dissociation of metal clusters. Scanning electron microscopy (SEM) images of catalysts show the size of Cu–Zn compound clusters and also their dispersion over the Al2O3 surface on the impregnated catalysts. The addition of urea could also yield smaller Cu–Zn compound clusters and better dispersion compared with the impregnated catalyst without urea. Such impregnated Cu–Zn catalysts with urea could be alternative novel catalysts for methanol steam reforming.  相似文献   

18.
采用共沉淀法和原位溶胶-凝胶法制备了TiO2-Al2O3复合载体,其负载的磷化镍催化剂采用等体积浸渍法和H2原位还原法制备. 通过N2吸附(BET)、X射线衍射(XRD)、透射电镜(TEM)、程序升温还原(TPR),X射线光电子能谱(XPS)和等离子体发射光谱(ICP-AES)表征技术对催化剂进行了表征,并通过喹啉的加氢脱氮反应评价了催化剂的加氢脱氮性能. 结果表明,原位溶胶-凝胶法制成的复合载体基本保留了原有的γ-Al2O3的孔特征,具有较大的比表面积和较宽的孔分布,TiO2主要以表面富集的形式分散在管状的γ-Al2O3表面,其负载的磷化镍催化剂还原后所形成的活性相为Ni2P和Ni12P5;而共沉淀法制成的复合载体比表面积较小,孔径分布更加集中,TiO2趋于在块状的Al2O3表面均匀分散,其负载的磷化镍催化剂具有更好的可还原性,还原后所形成的活性相为Ni2P. 不同的载体制备方法和不同的钛铝比对催化剂加氢脱氮性能影响较大,当n(Ti)/n(Al)=1/8时,共沉淀法载体负载的催化剂表现出最佳的加氢脱氮性能,在340 ℃,3 MPa,氢油体积比500,液时空速3 h-1的反应条件下,喹啉的脱氮率可以达到91.3%.  相似文献   

19.
采用恒pH法和非恒pH法制备了Al2O3掺杂的Pt/WO3/ZrO2催化剂,并用N2吸附-脱附、X射线衍射、紫外-可见漫反射、CO化学吸附、X射线光电子能谱、27Al魔角旋转核磁共振和吡啶吸附红外等技术对催化剂进行了表征.结果表明,相比于非恒pH法制备的催化剂,恒pH法制备的催化剂具有较高的比表面积和Pt分散度,在H2气氛中产生更多的B酸位,从而表现出更高的催化正庚烷临氢异构化反应活性; 在200℃和质量空速0.9h-1的反应条件下,正庚烷转化率达70.0%,明显高于非恒pH法制备的催化剂(43.5%).  相似文献   

20.
Phenylacetylene hydrogenation on Pd, Pt and Pd–Pt/Al2O3 catalysts has been studied. In all catalysts activity was found not to depend on particle size. However, selectivity to styrene was found to depend on Pd/Al2O3 catalysts. Carbon deposition in both metal and support explains such a behavior. Nevertheless, in small Pd particles a longer residence time of styrene may control the selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号