首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intramolecular N-alkylation of 2,3-O-isopropylidene-5-O-methanesulfonyl-6-O-t-butyldimethylsilyl-d-mannofuranose-oxime 7 afforded a five-membered cyclic nitrone 9, which on N-O bond reductive cleavage followed by deprotection of -OTBS and acetonide functionalities gave 1,4-dideoxy-1,4-imino-l-allitol (DIA) 3. Addition of allylmagnesium chloride to nitrone 9 afforded α-allylated product 10a in high diastereoselectivity providing an easy entry to N-hydroxy-C1-α-allyl-substituted pyrrolidine iminosugar 4a after removal of protecting group, while N-O bond reductive cleavage in 10a afforded C1-α-allyl-pyrrolidine iminosugar 4b.  相似文献   

2.
A facile synthesis of (−)-8a-epi-swainsonine 2 and 1,4-dideoxy-1,4-imino-l-ribitol (LRB) 4 has been achieved by using the versatile building block 3, which was available from cheap d-glutamic acid. The new forming stereogenic center in synthesis of 2 was constructed by highly selective reduction of the ketone 13 with Li(t-BuO)3AlH in THF (dr=95:5).  相似文献   

3.
B. Chandrasekhar 《Tetrahedron》2007,63(36):8746-8751
A stereo selective approach for the azasugars 1,4-dideoxy-1,4-imino-d-allitol, l-allitol, and 1,4-dideoxy-1,4-imino-d-talitol is described for different olefin compounds I derived from (R)-2,3-O-isopropylidine glyceraldehyde, l-ascorbic acid, and d-isoascorbic acid by using vinyl Grignard addition, allylation, RCM, and dihydroxylation as the key steps.  相似文献   

4.
The readily available 3-O-benzoyl-4-O-benzyl-1,2-O-isopropylidene-5-O-methanesulfonyl-β-d-fructopyranose (5) was straightforwardly transformed into its d-psico epimer (8), after O-debenzoylation followed by oxidation and reduction, which caused the inversion of the configuration at C(3). Compound 8 was treated with lithium azide yielding 5-azido-4-O-benzyl-5-deoxy-1,2-O-isopropylidene-α-l-tagatopyranose (9) that was transformed into the related 3,4-di-O-benzyl derivative 10. Cleavage of the acetonide in 10 to give 11, followed by regioselective 1-O-pivaloylation to 12 and subsequent catalytic hydrogenation gave (2R,3S,4R,5S)-3,4-dibenzyloxy-2,5-bis(hydroxymethyl)-2′-O-pivaloylpyrrolidine (13). Stereochemistry of 13 could be determined after O-deacylation to the symmetric pyrrolidine 14. Total deprotection of 14 gave 2,5-imino-2,5-dideoxy-d-galactitol (15, DGADP).  相似文献   

5.
The d-gluco-, l-ido-, d-galacto-, and l-altro-configured glycaro-1,5-lactams 1-4 were prepared from the known tartaric anhydride 5 via the aldehyde 6. These lactams are known (1) or potential (2-4) inhibitors of β-d-glucuronidases and α-l-iduronidases. Olefination of 6 to the (E)- and (Z)-alkenes 7 or 8, followed by reagent or substrate controlled dihydroxylation, lactonization, azidation, reduction, and deprotection led in 10 steps and in overall yields of 11-20% to the title lactams.  相似文献   

6.
Xuequan Lu 《Tetrahedron letters》2005,46(18):3165-3168
The preparations of d-ribo- and l-lyxo-phytosphingosines (1, 2) are described. Chelation-controlled addition of tetradecylmagnesium bromide to pentylidene-protected d-threitol aldehyde 6 afforded the key intermediate tetrol 7, providing the desired l-lyxo stereochemistry of phytosphingosine. Inversion at C4 of intermediate 7 provided the d-ribo stereochemistry.  相似文献   

7.
d-Ribono-1,4-lactone was treated with ethylamine in DMF to afford N-ethyl-d-ribonamide 9a in quantitative yield. Bromination of amide 9a by the system SOBr2 in DMF or PPh3/CBr4 in pyridine led, after acetylation, to epoxide 7. However, treatment of amide 9a with acetyl bromide in dioxane followed by acetylation gave 2,3,4-tri-O-acetyl-5-bromo-5-deoxyl-N-ethyl-d-ribonamide 10a. Methanolysis of 10a, with sodium methoxide, afforded the N-ethyl-d-ribonolactam 11a in 51% overall yields. Using this method, N-butyl, N-hexyl, N-dodecyl, and N-benzyl-d-ribonolactams 11b-e were obtained in good yields (48-53%).  相似文献   

8.
A stereoselective synthesis of 1,4-dideoxy-1,4-imino-d-allitol 1 and formal synthesis of (2S,3R,4S)-3,4-dihydroxyproline was achieved via the addition of vinylmagnesium bromide to the benzylimine derived from (R)-2,3-O-isopropylidene glyceraldehyde followed by N-allylation, ring-closing metathesis (RCM), and dihydroxylation.  相似文献   

9.
Regioselective bromination of unprotected d-galactono-1,4-lactone and d-mannono-1,4-lactone with PPh3/CBr4 led to 6-bromo-6-deoxy derivatives. These intermediates were treated with LiN3 and hydrogenated to give 6-amino-6-deoxy-d-galactono-1,6-lactam (8) and 6-amino-6-deoxy-d-mannono-1,6-lactam (13) in 74 and 67% overall yield, respectively.  相似文献   

10.
The Baylis-Hillman reaction of 3-O-benzyl-α-d-xylo-pentodialdo-1,4-furanose 2 afforded a diastereomeric mixture of l-ido- and d-gluco-configurated α-methylene-β-hydroxy esters 3a and 3b, respectively, in 1:1 ratio. Conjugate addition of benzyl amine on 3a gave adduct 4a as a major product while, addition of benzyl amine to 3b gave only one diastereomer 4b. Reduction of ester functionality in 4a/4b, opening of 1,2-acetonide functionality followed by reductive amino-cyclization under hydrogenation condition afforded azocanes 1c/1d in good yield.  相似文献   

11.
Optically pure N-aminoethyl prolinol derivatives 3a-c have been prepared from the dynamic kinetic resolution of N-(α-bromo-α-phenylacetyl) proline ester 1 in asymmetric nucleophilic substitution and subsequent reduction. The peptide-derived prolinols are tested as chiral ligands in the asymmetric addition of Reformatsky reagent to aromatic aldehydes. Chiral ligand 3c has been shown to be effective to produce enantioenriched β-hydroxy esters 5a-j with up to 98% ee.  相似文献   

12.
《Tetrahedron letters》2003,44(19):3771-3773
l-Isonucleosides 17 and 19 were stereoselectively synthesised from (S)-glycidol by two different procedures. The key step was the synthesis of a chiral dihydrofuran which was carried out by oxidation/elimination of 8 and by ring-closing metathesis of diene 10. The procedure can be applied to the synthesis of both enantiomers.  相似文献   

13.
The highly stereoselective synthesis of d,l-hexestrol (1), an inhibitor of microtubule assembly, is developed by using, as a key step, an intermolecular coupling of Co2(CO)6-complexed propargyl radicals. The latter are generated by novel complementary processes involving an interaction of tetrahydrofuran with Co2(CO)6-complexed propargyl alcohols and cations. An isomerically pure d,l-μ-η2-[3,4-di(4-methoxyphenyl)-1,5-hexadiyne]-bis-dicobalthexacarbonyl (d,l-6) is isolated in 69-91% yield with intermolecular coupling reactions exhibiting an excellent chemo- (0.5-7%) and d,l-diastereoselectivity (90-94%). The structure of d,l-6 is determined by X-ray diffraction. The subsequent steps include BBr3-induced demethylation of 4-methoxyaryl groups, demetalation with cerium(IV) ammonium nitrate, and hydrogenation of acetylenic termini affording d,l-hexestrol (1).  相似文献   

14.
The E. Coli K12 UDP-Gal mutase inhibitor 1 was prepared from d-glucose in 5 steps (42% overall yield). The 4-azido galactose derivative 11, leading to 1, was formed by treatment of galactose dithioacetal 7 with mercuric oxide and mercuric chloride in acetone. To obtain 7, acetal 3 was tosylated or triflated and treated with NaN3.  相似文献   

15.
Diastereoselective synthesis of 1-epi-castanospermine (2) from l-sorbose is described. The successful approach involved the use of 8-azido-2,8-dideoxy-α-l-gulo-oct-4-ulo-4,7-furanosononitrile intermediate (17). This compound was easily made in five steps from 3-O-benzoyl-2-deoxy-4,5:6,8-di-O-isopropylidene-α-l-gulo-oct-4-ulo-4,7-furanosononitrile (7) previously synthesized from l-sorbose. Catalytic hydrogenation of the azido intermediate 17 with Pd-C afforded with total stereocontrol one of the two possible piperidine diastereomers. Acid-catalyzed internal reductive deamination of the nitrile derivative completed the total synthesis of (1R,6S,7R,8R,8aR)-1,6,7,8-tetrahydroxyindolizidine [(+)-1-epi-castanospermine, 2].  相似文献   

16.
Cristina Chamorro 《Tetrahedron》2004,60(49):11145-11157
Screening of a combinatorial CTV-based artificial, synthetic receptor library 1 {1-13, 1-13, 1-13} for binding of a variety d-Ala-d-Ala and d-Ala-d-Lac containing ligands (6-11) was carried out in phosphate buffer (0.1 N, pH=7.0). After screening and Edman sequencing, synthetic receptors were found containing amino acid sequences, which are either characteristic for binding dye labeled d-Ala-d-Ala or d-Ala-d-Lac containing ligands. For example, receptors capable of binding d-Ala-d-Ala containing ligands 6, 7, 9 and 11 contained—almost in all cases—at least one basic amino acid residue—predominantly Lys—in their arms. This was really a striking difference with the arms of the receptors capable of binding d-Ala-d-Lac containing ligands 8 and 10, which usually contained a significant number of polar amino acids (Gln and Ser), especially in ligand 8, but hardly any basic amino acids. Use of different (fluorescent) dye labels showed that the label has a profound, albeit not decisive, influence on the binding by the receptor. A hit from the screening of the CTV-library with FITC-peptidoglycan (6) was selected for resynthesis and validation.  相似文献   

17.
The enantiomeric synthesis of l-cyclopentenyl nucleosides is described. The key intermediate (+)-cyclopentenyl alcohol (8) was prepared from methyl-α-d-galactopyranoside 1 using a ring closing metathesis reaction. Transformation of the allylic alcohol 8 into the allylic acetate (9) or carbonate (10), allows their coupling with purine and pyrimidine bases under Pd(0)-catalyzed Tsuji-Trost allylic alkylation's to yield 12a-c. The Pd catalyzed reaction was found to require the use of AlEt3.  相似文献   

18.
Céline Falentin 《Tetrahedron》2008,64(42):9989-9991
The non-natural enantiomer of polyoxamic acid (1) and 3,4-diepipolyoxamic acid (2) was synthesized in four steps from d-lyxono-1,4-lactone (4). Regioselective bromination of unprotected d-lyxono-1,4-lactone with HBr/AcOH led to 2-bromo-2-deoxy-d-xylono-1,4-lactone (5). This intermediate was treated with NaN3 to give 2-azido-2-deoxy-d-lyxono and xylono-1,4-lactones. Saponification of the obtained 2-azido derivatives gave the corresponding 2-azido-2-deoxyaldonic acids salt which, after neutralization followed by reduction, led to the expected compounds: (−)-polyoxamic acid (3) and 3,4-diepipolyoxamic acid (2) in 38% and 29% overall yields.  相似文献   

19.
N-Allyl protected 3-O-benzyloxglutarimide 11 was synthesized as a useful variant of the chiral building block 10. This modification allowed a high-yielding deprotection of the allyl group from the lactam intermediate 14. Starting from this building block, the asymmetric syntheses of aza-sugars 6-deoxyfagomine (2), d-rhamnono-1,5-lactam (6), as well as d-deoxyrhamnojirimycin (5) have been achieved in high regio- and/or diastereo-controlled manner.  相似文献   

20.
The stereoselective total synthesis of (+)-vittatine 1 and (+)-haemanthamine 2 starting from d-glucose is described. The cyclohexene ring in 1 was prepared in an optically active form from d-glucose using Ferrier's carbocyclization reaction, and the critical quaternary carbon was stereoselectively generated via chirality transfer by the Claisen rearrangement of cyclohexenol 6. The hexahydroindole skeleton was effectively constructed by the intramolecular aminomercuration-demercuration of 14, followed by Chugaev reaction to provide 16. Finally, Pictet-Spengler reaction completed the first chiral synthesis of (+)-vittatine 1. On the other hand, the α-hydroxylation of the ester 5 stereoselectively proceeded to give α-hydroxy ester 19, to which was introduced an amino function to provide 4. A similar transformation of 4, as employed in the synthesis of vittatine, furnished (+)-haemanthamine 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号