首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a recent paper (Sharif and Shamir in Class. Quantum Grav. 26:235020, 2009), we have studied the vacuum solutions of Bianchi types I and V spacetimes in the framework of metric f (R) gravity. Here we extend this work to perfect fluid solutions. For this purpose, we take stiff matter to find energy density and pressure of the universe. In particular, we find two exact solutions in each case which correspond to two models of the universe. The first solution gives a singular model while the second solution provides a non-singular model. The physical behavior of these models has been discussed using some physical quantities. Also, the function of the Ricci scalar is evaluated.  相似文献   

2.
We study the f (R)-Maxwell black hole imposed by constant curvature and its all thermodynamic quantities, which may lead to the Reissner-Nordström-AdS black hole by redefining Newtonian constant and charge. Further, we obtain the f (R)-Yang-Mills black hole imposed by constant curvature, which is related to the Einstein-Yang-Mills black hole in AdS space. Since there is no analytic black hole solution in the presence of Yang-Mills field, we obtain asymptotic solutions. Then, we confirm the presence of these solutions in a numerical way.  相似文献   

3.
Ferromagnetism and ferroelectricity in Eu monochalcogenides have been investigated by ab initio density functional theory in the DFT+U approach. Exchange interaction parameters and Curie temperatures under pressure are studied and discussed using Heisenberg Hamiltonian with first and second-nearest-neighbor interactions. The calculations showed that the hydrostatic pressure perfectly improves the Curie temperature (EuO: T C = 175 K; EuS: T C = 33.8 K) and in the other hand it cannot induce the spontaneous polarization (P s ). The effect of uniaxial and biaxial pressure is also studied. Although the uniaxial strains slightly increases the Curie temperature, it ensures the ferrolectricity in these systems by producing a spontaneous polarization of the order of P s (EuO) = 57.50 μC/cm2 and P s (EuS) = 42.86 μC/cm2 with pressures of 5% and 4%, respectively. The search for new model systems is a necessity to better understand the physics related to multiferroïc materials and to consider possible applications.  相似文献   

4.
From a macroscopic theory of the quantum vacuum in terms of conserved relativistic charges (generically denoted by q (a) with label a), we have obtained, in the low-energy limit, a particular type of f(R) model relevant to cosmology. The macroscopic quantum-vacuum theory allows us to distinguish between different phenomenological f(R) models on physical grounds. The text was submitted by the authors in English.  相似文献   

5.
We refer [1] to the role of an additional O(1) eV sterile neutrino in modified gravity models. We find parameter constraints in particular f(R) gravity model using following up-to-dated cosmological data: measurements of the cosmic microwave background (CMB) anisotropy, the CMB lensing potential, the baryon acoustic oscillations (BAO), the cluster mass function and the Hubble constant. It was obtained for the sterile neutrino mass 0.47 eV < m ν,sterile < 1 eV (2σ) assuming that the sterile neutrinos are thermalized and the active neutrinos are massless, not significantly larger than in the standard cosmology model within the same data set: 0.45 eV < m ν,sterile < 0.92 eV (2σ). But, if the mass of sterile neutrino is fixed and equals ≈ 1.5 eV according to various anomalies in neutrino oscillation experiments, f(R) gravity is much more consistent with observation data than the CDM model.  相似文献   

6.
The well-known energy problem is discussed in f (R) theory of gravity. We use the generalized Landau–Lifshitz energy–momentum complex in the framework of metric f (R) gravity to evaluate the energy density of plane symmetric solutions for some general f (R) models. In particular, this quantity is found for some popular choices of f (R) models. The constant scalar curvature condition and the stability condition for these models are also discussed. Further, we investigate the energy distribution of cosmic string spacetime.  相似文献   

7.
In this paper, we reconstruct cosmological models in the framework of f(R,T) gravity, where R is the Ricci scalar and T is the trace of the stress-energy tensor. We show that the dust fluid reproduces ΛCDM, phantom–non-phantom era and phantom cosmology. Further, we reconstruct different cosmological models, including the Chaplygin gas, and scalar field with some specific forms of f(R,T). Our numerical simulation for the Hubble parameter shows good agreement with the BAO observational data for low redshifts, z<2.  相似文献   

8.
This paper contains the study of spherically symmetric perfect fluid collapse in the frame work of f(R, T) modified theory of gravity. We proceed our work by considering the non-static spherically symmetric background in the interior and static spherically symmetric background in the exterior regions of the star. The junction conditions between exterior and interior regions are presented by matching the exterior and interior regions. The field equations are solved by taking the assumptions that the Ricci scalar as well as the trace of energy-momentum tensor are to be constant, for a particular f(R, T) model. By inserting the solution of the field equations in junction conditions, we evaluate the gravitational mass of the collapsing system. Also, we discuss the apparent horizons and their time formation for different possible cases. It is concluded that the term f(R 0, T 0) behaves as a source of repulsive force and that’s why it slowdowns the collapse of the matter.  相似文献   

9.
Necessary and sufficient conditions to the existence of a hermitian connection with totally skew-symmetric torsion and holonomy contained in SU(3) are given. A formula for the Riemannian scalar curvature is obtained. Non-compact solution to the supergravity-type I equations of motion with non-zero flux and non-constant dilaton is found in dimension 6. Non-conformally flat non-compact solutions to the supergravity-type I equations of motion with non-zero flux and non-constant dilaton are found in dimensions 7 and 8. A Riemannian metric with holonomy contained in G2 arises from our considerations and Hitchin’s flow equations, which seems to be new. Compact examples of SU(3),G2 and Spin(7) instanton satisfying the anomaly cancellation conditions are presented.  相似文献   

10.
In this paper the f(R) global monopole is reexamined. We provide an exact solution for the modified field equations in the presence of a global monopole for regions outside its core, generalizing previous results. Additionally, we discuss some particular cases obtained from this solution. We consider a setup consisting of a possible Schwarzschild black hole that absorbs the topological defect, giving rise to a static black hole endowed with a monopole’s charge. Besides, we demonstrate how the asymptotic behavior of the Higgs field far from the monopole’s core is shaped by a class of spacetime metrics which includes the ones analyzed here. In order to assess the gravitational properties of this system, we analyze the geodesic motion of both massive and massless test particles moving in the vicinity of such configuration. For the material particles we set the requirements they have to obey in order to experience stable orbits. On the other hand, for the photons we investigate how their trajectories are affected by the gravitational field of this black hole.  相似文献   

11.
We investigate quantum Fisher information (QFI) for s u(2) atomic coherent states and s u(1, 1) coherent states. In this work, we find that for s u(2) atomic coherent states, the QFI with respect to \(\vartheta ~(\mathcal {F}_{\vartheta })\) is independent of φ, the QFI with respect to \(\varphi (\mathcal {F}_{\varphi })\) is governed by ??. Analogously, for s u(1,1) coherent states, \(\mathcal {F}_{\tau }\) is independent of φ, and \(\mathcal {F}_{\varphi }\) is determined by τ. Particularly, our results show that \(\mathcal {F}_{\varphi }\) is symmetric with respect to ?? = π/2 for s u(2) atomic coherent states. And for s u(1,1) coherent states, \(\mathcal {F}_{\varphi }\) also possesses symmetry with respect to τ = 0.  相似文献   

12.
In this paper we study the Geodesic Deviation Equation (GDE) in metric f (R) gravity. We start giving a brief introduction of the GDE in General Relativity in the case of the standard cosmology. Next we generalize the GDE for metric f (R) gravity using again the FLRW metric. A generalization of the Mattig relation is also obtained. Finally we give and equivalent expression to the Dyer-Roeder equation in General Relativity in the context of f (R) gravity.  相似文献   

13.
We study the density of complex critical points of a real random SO(m+1) polynomial in m variables. In a previous paper (Macdonald in J. Stat. Phys. 136(5):807, 2009), the author used the Poincaré-Lelong formula to show that the density of complex zeros of a system of these real random polynomials rapidly approaches the density of complex zeros of a system of the corresponding complex random polynomials, the SU(m+1) polynomials. In this paper, we use the Kac-Rice formula to prove an analogous result: the density of complex critical points of one of these real random polynomials rapidly approaches the density of complex critical points of the corresponding complex random polynomial. In one variable, we give an exact formula and a scaling limit formula for the density of critical points of the real random SO(2) polynomial as well as for the density of critical points of the corresponding complex random SU(2) polynomial.  相似文献   

14.
It is shown that the acceleration of the universe can be understood by considering a F(T) gravity models. For these F(T) gravity models, a variant of the accelerating cosmology reconstruction program is developed. Some explicit examples of F(T) are reconstructed from the background FRW expansion history.  相似文献   

15.
Recently f(T) theories based on modifications of teleparallel gravity, where torsion is the geometric object describing gravity instead of curvature, have been proposed to explain the present cosmic accelerating expansion. The field equations are always second order, remarkably simpler than f(R) theories. In analogy to the f(R) theory, we consider here three types of f(T) gravity, and find that all of them can give rise to cosmic acceleration with interesting features, respectively.  相似文献   

16.
We investigate whether the new horizon first law proposed recently still work in f(R) theory. We identify the entropy and the energy of black hole as quantities proportional to the corresponding value of integration, supported by the fact that the new horizon first law holds true as a consequence of equations of motion in f(R) theories. The formulas for the entropy and energy of black hole found here are in agreement with the results obtained in literatures. For applications, some nontrivial black hole solutions in f(R) theories have been considered, the entropies and the energies of black holes in these models are firstly computed, which may be useful for future researches.  相似文献   

17.
We explore Noether symmetries of the Friedmann–Robertson–Walker universe model in modified Gauss–Bonnet gravity for both vacuum and nonvacuum (dust fluid) cases. We evaluate symmetry generators and the corresponding conserved quantities by using separation of variables and a power-law form. We construct exact f(G) models and study accelerating expansion of the universe in terms of a scale factor, deceleration, and the EoS parameters. We also check the validity of energy conditions through the weak energy conditions for our constructed model. The state finder parameters indicate the resemblance of our constructed models to the ΛCDM model. We conclude that our results are consistent with the recent astrophysical observations.  相似文献   

18.
19.
This paper presents the two body weak nonleptonic decays of B-mesons emitting vector (V) and vector (V) mesons within the framework of the diagrammatic approaches at flavor SU(3) symmetry. We have investigated exclusive two body decays of B-meson using model independent quark diagram scheme. We have shown that the recent measurement of the two body exclusive decays of B-mesons can allow us to determine the magnitude and even sign of the QD amplitude for BVV decays. Therefore, we become able to make few predictions for their branching fractions.  相似文献   

20.
The difference of vector and axial-vector charged current correlators is analyzed by means of QCD sum rules. The contribution of 10-dimensional 4-quark condensates is calculated and its value is estimated within the framework of the factorization hypothesis. It is compared to the result obtained from an operator fit of Borel sum rules in the complex q 2-plane, calculated from experimental data on hadronic -decays. This fit gives accurate values of the light quark condensate and the quark-gluon mixed condensate. The size of the high-order operators and the convergence of the operator series are discussed.Received: 10 May 2004, Revised: 7 September 2004, Published online: 18 November 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号