首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Validation experiments were conducted of a simple, fast, and inexpensive method for the determination of 229 pesticides fortified at 10-100 ng/g in lettuce and orange matrixes. The method is known as the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method for pesticide residues in foods. The procedure involved the extraction of a 15 g sample with 15 mL acetonitrile, followed by a liquid-liquid partitioning step performed by adding 6 g anhydrous MgSO4 plus 1.5 g NaCl. After centrifugation, the extract was decanted into a tube containing 300 mg primary secondary amine (PSA) sorbent plus 1.8 g anhydrous MgSO4, which constituted a cleanup procedure called dispersive solid-phase extraction (dispersive SPE). After a second shaking and centrifugation step, the acetonitrile extract was transferred to autosampler vials for concurrent analysis by gas chromatography/mass spectrometry with an ion trap instrument and liquid chromatography/tandem mass spectrometry with a triple quadrupole instrument using electrospray ionization. Each analytical method was designed to analyze 144 pesticides, with 59 targeted by both instruments. Recoveries for all but 11 of the analytes in at least one of the matrixes were between 70-120% (90-110% for 206 pesticides), and repeatabilities typically <10% were achieved for a wide range of fortified pesticides, including methamidophos, spinosad, imidacloprid, and imazalil. Dispersive SPE with PSA retained carboxylic acids (e.g., daminozide), and <50% recoveries were obtained for asulam, pyridate, dicofol, thiram, and chlorothalonil. Many actual samples and proficiency test samples were analyzed by the method, and the results compared favorably with those from traditional methods.  相似文献   

2.
Obana H  Akutsu K  Okihashi M  Kakimoto S  Hori S 《The Analyst》1999,124(8):1159-1165
A single extraction and a single clean-up procedure was developed for multi-residue analysis of pesticides in non-fatty vegetables and fruits. The method involves the use of a high capacity absorbent polymer for water as a drying agent in extraction from wet food samples and of a graphitized carbon column for clean-up. A homogeneously chopped food sample (20 g) and polymer (3 g) were mixed to absorb water from the sample and then 10 min later the mixture was vigorously extracted with ethyl acetate (100 ml). The extract (50 ml), separated by filtration, was loaded on a graphitized carbon column without concentration. Additional ethyl acetate (50 ml) was also eluted and both eluates were concentrated to 5 ml for analysis. The procedure for sample preparation was completed within 2 h. In a recovery test, 107 pesticides were spiked and average recoveries were more than 80% from asparagus, orange, potato and strawberry. Most pesticides were recovered in the range 70-120% with usually less than a 10% RSD for six experiments. The results indicated that a single extraction with ethyl acetate in the presence of polymer can be applied to the monitoring of pesticide residues in foods.  相似文献   

3.
Summary This procedure describes the CDFA method for multipesticide residue analysis of fresh fruits and vegetables. An aliquot of chopped sample is blended with acetonitrile. The resulting aqueous acetonitrile extract is filtered and cleaned up via reverse phase solid phase extraction apparatus. The pH of the filtrate is adjusted to neutral using phosphate buffer and the acetonitrile layer is separated from the aqueous layer by a salting out process. An aliquot of the acetonitrile layer is concentrated with a K-D evaporator by forming an azeotrope with n-hexane. The prepared sample is assayed for pesticide residues using GLC and HPLC. The performance of this method was evaluated by fortifying 6 representative fruits and vegetables with 7 chlorinated hydrocarbons, 7 organophosphate and 7 N-methylcarbamate pesticides at 0.1–0.2 ppm. No matrix interference was observed and the recovery of residues varied among different samples as well as different pesticides. Chlorothalonil results varied widely with irreproducible recoveries. In general, the method appears to be fast, rugged, and able to detect routinely at the 0.01 ppm level.  相似文献   

4.
Properties and determination of pesticides in fruits and vegetables   总被引:3,自引:0,他引:3  
The intensive development of agriculture means that more and more toxic organic and inorganic compounds are entering the environment. Because of their widespread use, stability, selective toxicity and bioaccumulation, pesticides are among the most toxic substances contaminating the environment. They are particularly dangerous in fruit and vegetables, by which people are exposed to them. It is therefore crucial to monitor pesticide residues in fruit and vegetables using all available analytical methods.We set out the problems in the determination of organonitrogen and organophosphorus pesticides in samples of fruit and vegetables, including the complexity and the diversity of matrices in biological materials, and the very low level of pesticides present, as a result of which target analytes have to be isolated and then enriched prior to final determination.We discuss the various stages in the determination of pesticide residues in fruit and vegetables. We present results from the literature in the context of Maximum Residue Levels (MRLs) of target pesticides in fruit and vegetable samples. We discuss the merits of the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) technique and two-dimensional gas chromatography.  相似文献   

5.
A new analytical method was devised using gas chromatography with tandem mass spectrometry (GC-MS-MS) for the routine analysis of 31 multi-class pesticide residues and approximately 8000 fresh fruit and vegetable samples (green bean, cucumber, pepper, tomato, eggplant, watermelon, melon, and marrow). Extraction of the pesticides with dichloromethane was carried out. The optimal ionization mode, either electron impact or chemical ionization, was selected for each pesticide in the same run. Carbofrit was used in the liner and combined with the selectivity of the detector this avoided additional clean-up. Thus, not only was money and time saved, the uncertainty of the method was decreased in its application to routine analysis. The average recoveries in cucumber obtained for each pesticide ranged between 71 and 119% at two different fortification levels (n=10 each) that ranged between 7 and 300 ng g(-1) (depending on the pesticide). The relative standard deviation was lower than 19% for all compounds tested. The calculated limits of detection and quantification were typically <1 ng g(-1) which were much lower than the maximum residue levels established by European legislations.  相似文献   

6.
Two rapid methods of sample preparation and analysis of fatty foods (e.g., milk, eggs, and avocado) were evaluated and compared for 32 pesticide residues representing a wide range of physicochemical properties. One method, dubbed the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method for pesticide residue analysis, entailed extraction of 15 g sample with 15 mL acetonitrile (MeCN) containing 1% acetic acid followed by addition of 6 g anhydrous magnesium sulfate and 1.5 g sodium acetate. After centrifugation, 1 mL of the buffered MeCN extract underwent a cleanup step (in a technique known as dispersive solid-phase extraction) using 50 mg each of C18 and primary secondary amine sorbents plus 150 mg MgSO4. The second method incorporated a form of matrix solid-phase dispersion (MSPD), in which 0.5 g sample plus 2 g C18 and 2 g anhydrous sodium sulfate was mixed in a mortar and pestle and added above a 2 g Florisil column on a vacuum manifold. Then, 5 x 2 mL MeCN was used to elute the pesticide analytes from the sample into a collection tube, and the extract was concentrated to 0.5 mL by evaporation. Extracts in both methods were analyzed concurrently by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. The recoveries of semi-polar and polar pesticides were typically 100% in both methods (except that basic pesticides, such as thiabendazole and imazalil, were not recovered in the MSPD method), but recovery of nonpolar pesticides decreased as fat content of the sample increased. This trend was more pronounced in the QuEChERS method, in which case the most lipophilic analyte tested, hexachlorobenzene, gave 27 +/- 1% recovery (n=6) in avocado (15% fat) with a<10 ng/g limit of quantitation.  相似文献   

7.
蔬菜、水果中12种限量有机磷农药残留量测定方法   总被引:2,自引:0,他引:2  
建立了蔬菜、水果中12种限量有机磷农药的提取、净化及毛细管柱气相色谱测定法。目标农药经乙腈萃取,弗罗里硅土柱净化,浓缩后用带火焰光度检测器(FPD)的双塔双柱气相色谱测定,前柱(DB-17)定量,后柱(DB-1)定性。12种农药线性良好,线性相关系数大于0.9990,对蔬菜、水果添加0.01~0.1mg/kg的水平,12种有机磷的平均回收率在70.9%~119.9%之间,相对标准偏差0.12%~12%,本方法的最低检测限0.005~0.05mg/kg。  相似文献   

8.
A new extraction and cleanup procedure with gas chromatography was developed for the sensitive determination of acephate, dimethoate, malathion, diazinon, quinalphos, chlorpyrifos, profenofos, alpha-endosulfan, beta-endosulfan, chlorothalonil and carbaryl using 1-chloro-4-fluorobenzene as an internal standard in fruits and vegetables. Several extracting and eluting solvents for solid-phase extraction were investigated. The overall extracting solvent with a mixture of acetone:ethyl acetate:hexane (10:80:10, v/v/v) and a eluting solvent of 5% acetone in hexane used with the RPC18 cartridge gave the best recovery for all of the investigated pesticides, and minimized the interference from co-extractants. Under the optimal extraction and clean-up conditions, recoveries of 85 - 99% with RSD < 5.0% (n = 3) for most of the pesticides at the 0.02 - 0.5 mg/kg level were obtained. The limit of detection was between 0.005 - 0.01 mg/kg and the limit of quantification was 0.01 mg/kg. This analytical procedure was characterized with high accuracy and acceptable sensitivity to meet requirements for monitoring pesticides in crops.  相似文献   

9.
A total of 54 scenarios of human errors in multi-residue analysis of pesticides in fruits and vegetables are mapped in a routine monitoring laboratory. The likelihood and severity of the errors and the ability of components of the laboratory quality system to prevent/block human errors, as well as the effectiveness of the quality system as a whole, are evaluated using expert judgments. It is shown that human errors in sampling are prevented less by the quality system than other steps of the analysis. Training and supervision are found as the quality system components having the highest priorities. Effectiveness of the quality system obtained a good score value of 71 % (in comparison with an ideal system preventing human errors with 100 % effectiveness). Variability of the score values resulting from changes of the expert judgments is discussed.  相似文献   

10.
建立了水果、蔬菜中抗蚜威残留的荧光检测-高效液相色谱法。样品以乙腈提取,固相萃取氨基小柱(LC-NH2)净化,Waterscarbamateanalysis(3.9mm×150mm,4μm),V(甲醇)∶V(水)∶V(乙腈)=16∶68∶16为流动相,柱温30℃,流速为1.5mL/min进行分离,用荧光检测器进行检测,激发波长和发射波长分别为317nm,392nm。回收率在98.5%~105.4%,相对标准偏差为3.0%~4.6%,检出限为0.01mg/kg。  相似文献   

11.
A multiresidue method for analysis of 90 pesticides with different physico-chemical properties in fruits and vegetables was developed. The method involves a rapid and small-scale extraction procedure with acetone using vortex mixing. Solid-phase extraction (SPE) on a highly cross-linked polystyrene divinylbenzene column (LiChrolut EN) was used for clean-up and pre-concentration of the pesticides from the water-diluted acetone extracts. For most fruit and vegetable samples this partial clean-up was sufficient, but some of them with more co-extracting substances need further clean-up (cereals, spinach, carrots, etc.). Diethylaminopropyl (DEA) modified silica was used for efficient removal of interferences caused by various organic acids, sugars, etc. The pesticide residues were determined by gas chromatography with a mass selective detector (GC-MS). The majority of pesticide recoveries for various fruits and vegetables were >80% in the concentration range from 0.01 to 0.50 mg/kg, except for the most polar pesticides (methamidophos, acephate, omethoate) which cannot be determined by this method. The limit of quantitation for most of the pesticides was 0.01 mg/kg with majority of relative standard deviations (R.S.D.s) below 10%.  相似文献   

12.
Five pesticides (fludioxonil, procymidone, pyriproxyfen, dinoseb and carbendazim) were separated in reversed migration micellar electrokinetic chromatography (RM-MEKC) using 20 mmol l(-1) phosphate buffer at pH 2.3, containing 25 mmol l(-1) sodium dodecylsulfate and 10% methanol. Three on-line concentration strategies, sweeping (SW), normal stacking with reversed migration and a water plug (SRW) and stacking with reverse migration and removal of sample matrix using polarity switching (SRMM), were compared. About 10-, 30- and 50-fold increases in detection sensitivity, compared with standard hydrodynamic injection (5 s at 0.5 psi), were observed with SW, SRW and SRMM, respectively. Limits of detection (LODs) ranged from 0.002 to 0.03 microg ml(-1) using only the on-line preconcentration procedures without any off-line concentration of the extract. A solid-phase extraction (SPE) procedure, for previous isolation and concentration of the analytes, was used in combination with any of the proposed on-line preconcentration strategies, which achieves the determination of pesticides at limits of quantification (LOQs) lower than 0.01 mg kg(-1). The recoveries obtained by SPE in samples spiked at 0.01 mg kg(-1) were between 70 and 100%, with RSDs between 10 and 18% using SRMM. Samples of fruits and vegetables were taken from the market, extracted by the proposed procedure and analyzed with RM-MEKC with the on-line strategies.  相似文献   

13.
Obana H  Akutsu K  Okihashi M  Hori S 《The Analyst》2001,126(9):1529-1534
A high-throughput multiresidue analysis of pesticides in non-fatty vegetables and fruits was developed. The method consisted of a single extraction and a single clean-up procedure. Food samples were extracted with ethyl acetate and the mixture of extract and food dregs were poured directly into the clean-up column. The clean-up column consisted of two layers of water-absorbent polymer (upper) and graphitized carbon (lower), which were packed in a reservoir (75 ml ) of a cartridge column. The polymer removed water in the extract while the carbon performed clean-up. In a recovery test, 110 pesticides were spiked and average recoveries were more than 95% from spinach and orange. Most pesticides were recovered in the range 70-115% with RSD usually < 10% for five experiments. The residue analyses were performed by the extraction of 12 pesticides from 13 samples. The two methods resulted in similar residue levels except chlorothalonil in celery, for which the result was lower with the proposed method. The results confirmed that the proposed method could be applied to monitoring of pesticide residue in foods.  相似文献   

14.
液相色谱-串联质谱法测定蔬菜水果中的吡丙醚残留量   总被引:1,自引:0,他引:1  
建立了测定蔬菜、水果中吡丙醚残留量的液相色谱-串联质谱(LC-MS/MS)分析方法。样品在醋酸钠缓冲液下用酸性乙腈提取,取1 mL提取液用PSA(N-丙基乙二胺)填料净化后,采用CAPCELL PAK C18色谱柱(50 mm×2.0 mm,3 μm)分离,以含0.1%甲酸的乙腈溶液和含0.1%甲酸的2 mmol/L乙酸铵溶液作为流动相进行梯度洗脱,以电喷雾电离三重四极杆串联质谱在正离子多反应监测(MRM)模式下进行测定。吡丙醚在2.5~50 μg/L范围内呈线性关系,相关系数为0.9999,在5,50,100 μg/kg 3个添加水平下的回收率为84.7%~91.5%,相对标准偏差(RSD,n10)低于10%。该方法操作简便,稳定性和选择性好,灵敏度高(检出限为5 μg/kg),适用于蔬菜、水果中吡丙醚残留量的测定。  相似文献   

15.
An analytical method is reported for residue analysis of the fungicide meptyldinocap in different fruit matrixes that involves extraction with ethyl acetate, hydrolysis of the residues with ethanolamine, and determination by LC/MS/MS. The method involves extraction of 10 g sample with 10 mL ethyl acetate; evaporation of the ethyl acetate phase to dryness, and subsequent hydrolysis of the residues to 4,6-dinitro-2-(1-methylheptyl) phenol on reaction with 1% ethanolamine. The pH of this hydrolyzed product was neutralized with formic acid and analyzed by LC/MS/MS. The hydrolysis reaction followed pseudo-first-order kinetics, and the reaction product was spectroscopically confirmed as 2-(1-methylheptyl)-4,6-dinitrophenol. The method offered > 80% recoveries at an LOQ of 10 ng/g for grape and mango, 25 ng/g for pomegranate with intralaboratory Horwitz ratio < 0.5, and measurement uncertainties < 10% at LOQ levels. Considering first-order rate kinetics, activation energy, enthalpy of activation, and entropy of activation varied as solvent > mango > grape > pomegranate. Free energy of activation at 298 K was higher than at 280 K and was similar for solvent and three matrixes at both temperatures.  相似文献   

16.
A GC/tandem quadrupole MS/MS method was developed and validated for the determination of the residues of 140 pesticides in fruits and vegetables. Pesticides were extracted from samples by using a miniaturized acetonitrile-based extraction technique known as the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. Validation studies were carried out on carrots, tomatoes, and strawberries. In order to reduce systematic errors due to a matrix-induced effect, quantification was carried out using matrix-matched standard calibration curves. The recovery and precision results satisfied the European Union criteria (i.e., average recoveries were in the range 70-120% with RSDs < or = 20%) for 125 of the 140 pesticides at a spiking level of 0.01 mg/kg. At the higher spiking levels, there were just two instances of overall average recovery < 70% (chlorothalonil and captan). The measurement uncertainty was estimated following a "top down" approach as being 21 and 35%, on average, based on validation and ongoing recovery data, respectively (coverage factor k = 2, confidence level 95%). Practical application to 541 samples of apples, tomatoes, strawberries, cucumbers, currants, mushrooms, carrots, peppers, pears, onions, and gooseberries under strict QC conditions demonstrated the ruggedness of the total procedure.  相似文献   

17.
Summary An improved and quick cleanup method has been developed for the liquid chromatographic determination of 21 N-methylcarbamate pesticides and 10 of their metabolites in grains, fruits and vegetables. Various types of solid phase extraction columns have been tested for the cleanup step in order to replace the time-consuming cleanup method found in the literature. Aminopropyl-bonded silica columns proved to be superior to unbonded silica or octyl, octadecyl, cyanopropyl and diol-bonded silica. For all 16 types of matrices tested, a single column cleanup step appeared to be satisfactory. The final determination was performed by separation of the N-methylcarbamates via high-performance liquid chromatography followed by postcolumn reaction, fluorogenic labelling of the hydrolytically formed methylamine with the orthophthalaldehyde/2-mercaptoethanol reagent, and fluorescence detection. Recovery data for 256 carbamate/commodity combinations will be given. The results of the routine analysis of real samples will also be presented. Finally, possibilities for confirming positive samples by an independent, second method will be discussed.  相似文献   

18.
Rodríguez R  Picó Y  Font G  Mañes J 《Electrophoresis》2001,22(10):2010-2016
A multiresidue analytical method based on solid-phase extraction (SPE) enrichment combined with capillary electrophoresis (CE), using micellar electrokinetic capillary chromatography (MEKC), was developed to determine ten substituted urea pesticides in orange and tomato samples. Several factors such as pH, composition and concentration of the buffer, concentration of surfactant, addition of organic solvent, and working voltage were optimized to obtain the best compound separation in the shortest time. Separation can be achieved in 7 min using a micellar aqueous pH 9 buffer composed of 4 mM borate and 35 mM sodium dodecyl sulfate. After an SPE procedure, which provided a 10-fold enrichment, the limit of detection was about 0.05 mg kg(-1), which is in the order of the maximum residue limits (MRLs) established by the European Union (EU) for most of these compounds. Increasing the enrichment factor by using a larger amount of sample is difficult in oranges due to the matrix interferences, but is possible in tomatoes, which gave cleaner extracts and easily reached a 25-fold enrichment factor. The procedure involving SPE and CE provided acceptable recoveries (ranged 42-118%) and relative standard deviations (RSDs; < 19%) at levels between 0.3 and 5 mg kg(-1).  相似文献   

19.
Two procedures based on solid-phase extraction (SPE) and stir-bar sorptive extraction (SBSE) in combination with micellar electrokinetic chromatography (MEKC)--diode array detection (DAD) were compared for the simultaneous extraction of acrinathrin, bitertanol, cyproconazole, fludioxonil, flutriafol, myclobutanil, pyriproxyfen, and tebuconazole in lettuce, tomato, grape, and strawberry. Selectivity and resolution of the MEKC procedure were studied changing the pH and the molarity of the buffer, the type and the concentration of surfactant, and the methanol content in the mobile phase. A buffer consisting of 6 mM sodium tetraborate decahydrate with 75 mM of cholic acid sodium solution (pH 9.2) gave the best results. Linearity, extraction efficiencies and limits of quantitation (LOQs) of both extraction methods were compared. The recoveries obtained by SPE ranged from 40 to 106% with relative standard deviations (R.S.D.s) from 10 to 19% whereas by the SBSE method, the recoveries were 12-47% and the R.S.D.s 3-17%. The LOQs were much better by SPE (0.2-0.5 mg kg(-1) depending on the processed sample amount) than those obtained by SBSE (1 mg kg(-1) for each compound). Advantages and disadvantages of both procedures are also discussed. As SPE is more robust, rapid, and sensitive than SBSE, its application in combination with MEKC is recommended because provided LOQs below the MRLs established, which is not always attained by SBSE.  相似文献   

20.
A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target acquisition was performed through two alternating scan events: one at low collision energy and another at a higher collision energy ramp (MSE). In this way, both protonated molecule and/or molecular ion together with fragment ions were obtained in a single run. Validation was performed according to SANCO/12571/2013 by analysing 20 samples (10 different commodities in duplicate), fortified with a test set of 132 pesticides at 0.01, 0.05 and 0.20 mg kg−1. For screening, the detection was based on one diagnostic ion (in most cases the protonated molecule). Overall, at the 0.01 mg kg−1 level, 89% of the 2620 fortifications made were detected. The screening detection limit for individual pesticides was 0.01 mg kg−1 for 77% of the pesticides investigated. The possibilities for identification according to the SANCO criteria, requiring two ions with a mass accuracy ≤±5 ppm and an ion-ratio deviation ≤±30%, were investigated. At the 0.01 mg kg−1 level, identification was possible for 70% of the pesticides detected during screening. This increased to 87% and 93% at the 0.05 and 0.20 mg kg−1 level, respectively. Insufficient sensitivity for the second ion was the main reason for the inability to identify detected pesticides, followed by deviations in mass accuracy and ion ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号