首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single-walled carbon nanotubes (SWNTs) have remarkable and unique electronic, mechanical, and thermal properties, which are closely related to their chiralities; thus, the chirality-selective recognition/extraction of the SWNTs is one of the central issues in nanotube science. However, any rational materials design enabling one to efficiently extract/solubilize pure SWNT with a desired chirality has yet not been demonstrated. Herein we report that certain chiral polyfluorene copolymers can well-recognize SWNTs with a certain chirality preferentially, leading to solubilization of specific chiral SWNTs. The chiral copolymers were prepared by the Ni(0)-catalyzed Yamamoto coupling reaction of 2,7-dibromo-9,9-di-n-decylfluorene and 2,7-dibromo-9,9-bis[(S)-(+)-2-methylbutyl]fluorene comonomers. The selectivity of the SWNT chirality was mainly determined by the relative fraction of the achiral and chiral side groups. By a molecular mechanics simulation, the cooperative interaction between the fluorene moiety, alkyl side chain, and graphene wall were responsible for the recognition/dissolution ability of SWNT chirality. This is a first example describing the rational design and synthesis of novel fluorene-based copolymers toward the recognition/extraction of targeted (n,?m) chirality of the SWNTs.  相似文献   

2.
The development of a simple and facile method to extract single‐walled carbon nanotubes (SWNTs) with a specific chirality index is one of the most‐crucial issues in the fundamental study and applications of the SWNTs. We have compared the selective recognition/extraction of the SWNT chirality of poly(9,10‐dioctyl‐9,10‐dihydrophenanthrene‐2,7‐diyl) (2C8‐PPhO) to that of poly(9,9‐dioctyfluoreny1‐2,7‐diyl) (2C8‐PFO) that are able to extract specific semiconducting SWNTs free of any metallic SWNTs. Vis/NIR absorption, 2D photoluminescence, and Raman spectroscopy as well as molecular mechanical simulations were used to analyze and understand the obtained chiral selective solubilization behavior. We found that 2C8‐PPhO selectively extracts and enriches the (8,6), (8,7), and (9,7)SWNTs, whose behaviors are different from that of 2C8‐PFO, which preferentially extracts the (7,5), (7,6), (8,6), and (8,7)SWNTs. Our results indicate that 2C8‐PPhO preferably recognizes larger‐diameter SWNTs with higher chiral angles compared to those recognized by 2C8‐PFO. These findings demonstrate that the difference in the non‐aromatic ring numbers on the polymers results in different SWNT chirality recognition/extraction behaviors.  相似文献   

3.
The first approach for the preparation of metal nanoparticle/semiconducting single-walled carbon nanotube (SWNT) hybrids with specified chirality is described. For this purpose, a copolymer of a fluorene derivative with two long-chain alkyl substituents and a carbazole derivative carrying a thiol group was used. The copolymer was found to selectively dissolve (7,6)- and (8,7)SWNTs, as determined by UV/Vis/NIR absorption and Raman spectroscopy and 2D photoluminescence mapping. Gold and silver nanoparticles with diameters of about 3.8 and about 3.2 nm, respectively, were readily attached along the SWNTs by means of coordination bonds between the nanoparticles and the thiol moieties on the copolymer, as revealed by atomic force and electron microscopy studies. The study provides a novel way to design and fabricate metal nanoparticle/semiconducting SWNT hybrids with specific nanotube chirality.  相似文献   

4.
It remains an elusive goal to obtain high performance single-walled carbon-nanotube (SWNT) electronics such as field effect transistors (FETs) composed of single- or few-chirality SWNTs, due to broad distributions in as-grown materials. Much progress has been made by various separation approaches to obtain materials enriched in metal or semiconducting nanotubes or even in single chiralties. However, research in validating SWNT separations by electrical transport measurements and building functional electronic devices has been scarce. Here, we performed length, diameter, and chirality separation of DNA functionalized HiPco SWNTs by chromatography methods, and we characterized the chiralities by photoluminescence excitation spectroscopy, optical absorption spectroscopy, and electrical transport measurements. The use of these combined methods provided deeper insight to the degree of separation than either technique alone. Separation of SWNTs by chirality and diameter occurred at varying degrees that decreased with increasing tube diameter. This calls for new separation methods capable of metallicity or chirality separation of large diameter SWNTs (in the approximately 1.5 nm range) needed for high performance nanoelectronics. With most of the separated fractions enriched in semiconducting SWNTs, nanotubes placed in parallel in short-channel (approximately 200 nm) electrical devices fail to produce FETs with high on/off switching, indicating incomplete elimination of metallic species. In rare cases with a certain separated SWNT fraction, we were able to fabricate FET devices composed of small-diameter, chemically separated SWNTs in parallel, with high on-/off-current (I(on)/I(off)) ratios up to 105 owing to semiconducting SWNTs with only a few (n,m) chiralities in the fraction. This was the first time that chemically separated SWNTs were used for short channel, all-semiconducting SWNT electronics dominant by just a few (n,m)'s. Nevertheless, the results suggest that much improved chemical separation methods are needed to produce nanotube electronics at a large scale.  相似文献   

5.
Single-walled carbon nanotubes (SWNTs) are potential materials for future nanoelectronics. Since the electronic and optical properties of SWNTs strongly depend on tube diameter and chirality, obtaining SWNTs with narrow (n,m) chirality distribution by selective growth or chemical separation has been an active area of research. Here, we demonstrate that a new, bimetallic FeRu catalyst affords SWNT growth with narrow diameter and chirality distribution in methane CVD. At 600 degrees C, methane CVD on FeRu catalyst produced predominantly (6,5) SWNTs according to UV-vis-NIR absorption and photoluminescence excitation/emission (PLE) spectroscopic characterization. At 850 degrees C, the dominant semiconducting species produced are (8,4), (7,6), and (7,5) SWNTs, with much narrower distributions in diameter and chirality than materials grown by other catalysts. Further, we show that narrow diameter/chirality growth combined with chemical separation by ion exchange chromatography (IEC) greatly facilitates achieving single (m,n) SWNT samples, as demonstrated by obtaining highly enriched (8,4) SWNTs with near elimination of metallic SWNTs existing in the as-grown material.  相似文献   

6.
Three different copolymers of C60‐carrying‐carbazole and fluorene units with different copolymer composition ratios were designed and synthesized. On the basis of photoluminescence, atomic force microscopy, and Vis‐NIR and Raman spectroscopic analysis, we found that these copolymers solubilize only semiconducting single‐walled carbon nanotubes (sem‐SWNTs) to form copolymer/sem‐SWNT hybrids, in which energy transfer from the copolymer/C60 moieties to the SWNTs was revealed. By comparing two possible hybrid structures with molecular‐mechanics simulations, the greatest stabilization was found when the C60 moieties lay on the sem‐SWNT surfaces.  相似文献   

7.
Supramolecular structures of organic molecules on planar nanocarbon surfaces, such as highly oriented pyrolytic graphite (HOPG), have been extensively studied and the factors that control them are generally well-established. In contrast, the properties of supramolecular structures on curved nanocarbon surfaces like carbon nanotubes remain challenging to predict and/or to understand. This paper reports an investigation into the first study of the supramolecular structures of 5,15-bisdodecylporphyrin (C12P) on chiral, concentrated single-walled carbon nanotubes (SWNTs; with right-handed helix P- and left-handed helix M-) surfaces using STM. Furthermore, the study is the first of its kind to experimentally assign the absolute-handedness chirality of SWNTs, as well as to understand their effect on the supramolecular structures of organic molecules on their surfaces. Interestingly, these SWNT enantiomers resulted in supramolecular structures of opposite chirality based on the handedness chirality. With molecular modelling, we predicted the absolute-handedness chirality of SWNTs, before demonstrating this experimentally.  相似文献   

8.
We theoretically investigate the separation of individualized metallic and semiconducting single-wall carbon nanotubes (SWNTs) in a dielectrophoretic (DEP) flow device. The SWNT motion is simulated by a Brownian dynamics (BD) algorithm, which includes the translational and rotational effects of hydrodynamic, Brownian, dielectrophoretic, and electrophoretic forces. The device geometry is chosen to be a coaxial cylinder because it yields effective flow throughput, the DEP and flow fields are orthogonal to each other, and all the fields can be described analytically everywhere. We construct a flow-DEP phase map showing different regimes, depending on the relative magnitudes of the forces in play. The BD code is combined with an optimization algorithm that searches for the conditions that maximize the separation performance. The optimization results show that a 99% sorting performance can be achieved with typical SWNT parameters by operating in a region of the phase map where the metallic SWNTs completely orient with the field, whereas the semiconducting SWNTs partially flow-align.  相似文献   

9.
Physico-chemical methods to sort single-walled carbon nanotubes (SWNTs) by chiral index are presently lacking but are required for in-depth experimental analysis and also for potential future applications of specific species. Here we report the unexpected selectivity of poly(N-decyl-2,7-carbazole) to almost exclusively disperse semiconducting SWNTs with differences of their chiral indices (n - m) ≥ 2 in toluene. The observed selectivity complements perfectly the dispersing features of the fluorene analogue poly(9,9-dialkyl-2,7-fluorene), which disperses semiconducting SWNTs with (n - m) ≤ 2 in toluene. The dispersed samples are further purified by density gradient centrifugation and analyzed by photoluminescence excitation spectroscopy. All-atom molecular modeling with decamer model compounds of the polymers and (10,2) and (7,6) SWNTs suggests differences in the π-π stacking interaction as origin of the selectivity. We observe energetically favored complexes between the (10,2) SWNT and the carbazole decamer and between the (7,6) SWNT and the fluorene decamer, respectively. These findings demonstrate that subtle structural changes of polymers lead to selective solvation of different families of carbon nanotubes. Furthermore, chemical screening of closely related polymers may pave the way toward simple, low-cost, and index-specific isolation of SWNTs.  相似文献   

10.
The separation and isolation of semiconducting and metallic single‐walled carbon nanotubes (SWNTs) on a large scale remains a barrier to many commercial applications. Selective extraction of semiconducting SWNTs by wrapping and dispersion with conjugated polymers has been demonstrated to be effective, but the structural parameters of conjugated polymers that dictate selectivity are poorly understood. Here, we report nanotube dispersions with a poly(fluorene‐co‐pyridine) copolymer and its cationic methylated derivative, and show that electron‐deficient conjugated π‐systems bias the dispersion selectivity toward metallic SWNTs. Differentiation of semiconducting and metallic SWNT populations was carried out by a combination of UV/Vis‐NIR absorption spectroscopy, Raman spectroscopy, fluorescence spectroscopy, and electrical conductivity measurements. These results provide new insight into the rational design of conjugated polymers for the selective dispersion of metallic SWNTs.  相似文献   

11.
We describe the design, synthesis, and characterization of a supramolecular hybrid of gold nanometals and semiconducting single-walled carbon nanotubes (SWNTs) wrapped by a porphyrin-fluorene copolymer (1), as well as fabrication of a thin-film transistor (TFT) device using the hybrid. Photoluminescence mapping revealed that the copolymer selectively dissolved SWNTs with chirality indices of (8,6), (8,7), (9,7), (7,6), and (7,5); dissolution of (8,6), and (8,7) SWNTs was especially efficient. The solubilized SWNTs were connected to gold nanoparticles (AuNPs) via a coordination bond to prepare a supramolecular hybrid composed of AuNPs/copolymer 1-wrapped SWNTs, which were studied by atomic force and scanning and transmission electron microscopies. A fabricated TFT device using the semiconducting SWNTs/copolymer 1 shows evident p-type transport with an On/Off ratio of ~10(5). The transport properties of the TFT changed after coordination of the AuNPs with the SWNTs/copolymer 1.  相似文献   

12.
Poly(aminobenzene sulfonic acid) (PABS) and polyethylene glycol (PEG) were covalently attached to single-walled carbon nanotubes (SWNTs) to form water-soluble graft copolymers. Quantitative near-IR (NIR) spectroscopic studies of these SWNT graft copolymers indicate a water solubility of about 5 mg/mL, and atomic force microscopy studies show a fairly uniform length and diameter. On the basis of thermogravimetric analysis, the loading of SWNTs in the graft copolymers is estimated to be 30% for SWNT-PABS and 71% for SWNT-PEG. NIR spectroscopic studies of SWNT-PABS show that this graft copolymer has a ground state that is a hybrid of the electronic structures of the isolated PABS and SWNT macromolecules.  相似文献   

13.
Single-walled carbon nanotubes (SWNTs) demonstrate remarkable electronic and mechanical properties useful in developing areas such as nanoelectromechanical systems and flexible electronics. However, the highly inhomogeneous electronic distribution arising from different diameters and chirality in any given as-synthesized SWNT samples imposes severe limitations. Recently demonstrated selective chemical functionalization methods may provide a simple scalable means of eliminating metallic tubes from SWNT transistors and electronic devices. Here, we report on combined electron transport and Raman studies on the reaction of 4-bromobenzene diazonium tetrafluoroborate directly with single and networks of SWNT transistors. First, Raman studies are carried out on isolated individual SWNTs grown on SiO2/Si substrates by chemical vapor deposition with and without metal contacts. Metallic tubes are found to have, on average, higher reactivity toward diazonium reagents. However, a considerable degradation of electrical properties of semiconducting tubes occurs if the reaction is carried out to the point where the conductivity of metallic tubes is significantly suppressed. Insights from single-tube studies are then applied to elucidate the electrical and the Raman responses of SWNT random network transistors of different channel lengths to chemical functionalization.  相似文献   

14.
While it is well-known that tube-tube interaction causes changes (peak red-shift and suppression) in the optical absorption of single-walled carbon nanotubes (SWNTs), we found in this work that, upon bundling, the optical absorption of metallic SWNTs (M11) is less affected compared to their semiconducting counterparts (S11 or S22), resulting in enhanced absorbance ratio of metallic and semiconducting SWNTs (A(M)/A(S)). Annealing of the SWNTs increases this ratio due to the intensified tube-tube interaction. We have also found that the interaction between SWNTs and the surfactant Triton X-405 has a similar effect. The evaluation of SWNT separation by types (metallic or semiconducting) based on the optical absorption should take these effects into account.  相似文献   

15.
Copolymers of p-(phenylazo)benzyl-L-aspartate and n-octadecyl-L-aspartate exist as right- and left-handed α-helices in solution at 25°C depending on the copolymer composition: the reversal of helix sense from a right- to left-handed one occurs with increasing the azobenzene content. The α-helices of the copolymers are very sensitive to trifluoroacetic acid (TFA), and are converted into random coil below 2.0% of TFA. Among the copolymers, the copolymer containing 47% azobenzene groups is unique since it exhibits a TFA-induced conformational change from right-handed α-helix to random coil via left-handed α-helix. Upon UV light irradiation at 25°C, the copolymers containing 68 and 89% azobenzene groups caused the reversal in helix sense from a left- to right-handed one. The conformations of the copolymers were dependent on temperature, mostly right-handed and left-handed α-helices at lower and higher temperatures, respectively. On this basis, the copolymer containing 47% azobenzene groups could be made to undergo a photoinduced helix reversal at high temperatures.  相似文献   

16.
Substantial separation of single-wall carbon nanotubes (SWNTs) according to type (metallic versus semiconducting) has been achieved for HiPco and laser-ablated SWNTs. We presently argue that stable dispersions of SWNTs with octadecylamine (ODA) in tetrahydrofuran (THF) originate from the physisorption and organization of ODA along the SWNT sidewalls in addition to the originally proposed zwitterion model. Furthermore, the reported affinity of amine groups for semiconducting SWNTs, as opposed to their metallic counterparts, contributes additional stability to the physisorbed ODA. This provides a venue for the selective precipitation of metallic SWNTs upon increasing dispersion concentration, as indicated by Raman investigations.  相似文献   

17.
Ever since the discovery of single-walled carbon nanotubes (SWNTs), there have been many reports and predictions on their superior properties for use in a wide variety of potential applications. However, an SWNT is either metallic or semiconducting; these properties are distinctively different in electrical conductivity and many other aspects. The available bulk-production methods generally yield mixtures of metallic and semiconducting SWNTs, despite continuing efforts in metallicity-selective nanotube growth. Presented here are significant advances and major achievements in the development of postproduction separation methods, which are now capable of harvesting separated metallic and semiconducting SWNTs from different production sources with sufficiently high enrichment and quantities for satisfying at least the needs in research and technological explorations. Opportunities and some available examples for the use of metallic SWNTs in transparent electrodes and semiconducting SWNTs in various device nanotechnologies are highlighted and discussed.  相似文献   

18.
We have found that racemic mixtures of chiral single-walled nanotubes (SWNTs) wrapped with d(GT)20 DNA oligomer exhibit circular dichroism (CD). We attribute the CD signal to induced CD arising from the coupling of transition moments of the SWNTs and the DNA. Although the nanotube mixture appears to contain both enantiomers in equal amounts, DNA-SWNT transition moment interaction is more constructive for one SWNT enantiomer over the other, resulting in an overall CD signal.  相似文献   

19.
Development of functional materials capable of exhibiting chirality tunable circularly polarized luminescence (CPL) is currently in high demand for potential technological applications. Herein we demonstrate the formation of both left- and right-handed fluorescent helical superstructures from each enantiomer of a chiral tetraphenylethylene derivative through judicious choice of the solution processing conditions. Interestingly, both the aggregation induced emission active enantiomers exhibit handedness inversion of their supramolecular helical assemblies just by varying the solution polarity without any change in their molecular chirality. The resulting helical supramolecular aggregates from each enantiomer are capable of emitting circularly polarized light, thus enabling both right- and left-handed CPL from a single chiral material. The left- and right-handed supramolecular helical aggregates in the dried films have been characterized using spectroscopy, scanning electron microscopy, and transmission electron microscopy techniques. These new chiral aggregation induced emission compounds could find applications in devices where CPL of opposite handedness is required from the same material and would facilitate our understanding of the formation of helical assemblies with switchable supramolecular chirality.

The formation of both left- and right-handed helical superstructures with circularly polarized luminescence has been achieved in a chiral tetraphenylethylene derivative just by varying the solution polarity without any change in molecular chirality.  相似文献   

20.
Ferroelectric liquid-crystalline polymers and copolymers were synthesized from acrylate polymers with side chains consisting of a flexible spacer unit, a mesogenic unit and an optically active substituent. In the chiral smectic C (S*c) phases typical fan-shaped textures with equidistant lines (caused by the helical structures) were observed. It was found that the helical pitch increased with increasing polymer molecular weight. The helical pitch also increased in copolymers containing mixtures of right- and left-handed chiral side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号